Министерство образования и науки Российской Федерации Федеральное агентство по образованию Псковский государственный политехнический институт Электромеханический факультет. Кафедра «Электропривод и системы автоматизации» А. М. Марков, специальности 140604 очно-заочной (вечерней) формы обучения

Псков, 2006

УДК 621.313 (075.8) «Электрические машины» (Часть II)

Рекомендовано к изданию Учебно-методическим советом

Псковского государственного политехнического института

Рецензенты:

– Сычёв В.А., к.т.н., доцент, генеральный директор

ООО Субконтрактинговый Центр «Северо-Запад».

– Родионов Ю.А., к.т.н., доцент, директор ООО «Экотех».

– Григорьев О.И., к.т.н., доцент кафедры «Электроэнергетика», ППИ.

Марков А.М. «Электрические машины» (Часть II). Учебное пособие. Для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов. – Псков, 2006. – 56 с.

В учебном пособии «Электрические машины» (Часть II) рассмотрены основы теории электрических машин переменного тока. Приведены основные конструкции и характеристики асинхронных и синхронных машин различного исполнения, режимы их работы, условия выбора и эксплуатации.

Учебное пособие предназначено для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов, а также для студентов других специальностей и специалистов, интересующихся вопросами расчёта и эксплуатации электрических машин.

© Псковский государственный политехнический институт, 2006.

© Марков А.М., 2006.

ОСНОВНЫЕ ВИДЫ МАШИН ПЕРЕМЕННОГО ТОКА И ИХ УСТРОЙСТВО

Основные виды машин переменного тока

На практике применяются преимущественно трехфазные (т = 3) машины переменного тока. Машины с другим числом фаз (т = 2, 6) используются для специальных целей.

Однако действие всех многофазных машин основано на принципе вращающегося магнитного поля, и поэтому их теорий является общей. Однофазные машины переменного тока имеют ограниченное применение.

Ниже, прежде всего, рассматриваются трехфазные машины переменного тока. Они подразделяются на три основных вида: синхронные, асинхронные и коллекторные.

Все виды машин переменного тока рассчитываются на работу при синусоидальном переменном токе.

В синхронных машинах нормальных типов ротор вращается с такой же скоростью и в том же направлении, как и вращающееся магнитное поле. Таким образом, вращение ротора происходит в такт, или синхронно, с вращающимся полем, откуда и происходит название этого вида машин.

Синхронные машины используются, прежде всего, в качестве генераторов, и за незначительным исключением на электрических станциях переменного тока устанавливаются синхронные генераторы. Однако все более расширяется также применение синхронных машин в качестве двигателей.

Ротор асинхронных машин вращается несинхронно, или асинхронно, по отношению к вращающемуся магнитному полю, чем и обусловлено название этих машин.

На практике асинхронные машины используются главным образом в качестве двигателей, и подавляющее число применяемых в промышленности электрических двигателей являются асинхронными.

Коллекторные машины переменного тока также вращаются несинхронно с магнитным полем, и в этом смысле они являются асинхронными машинами. Однако ввиду наличия у них коллектора и связанных с этим особенностей они выделяются в отдельный вид машин переменного тока. Наибольшее применение коллекторные машины находят в качестве двигателей. Однако их использование ограничено, и поэтому главнейшими видами машин переменного тока являются асинхронные и синхронные машины.

Устройство и принцип действия асинхронной машины

Устройство асинхронной машины. Неподвижная часть машины переменного тока называется статором, а подвижная часть — ротором. Сердечники статора и ротора асинхронных машин собираются из листов электротехнической стали (рис. 19-1), которые до сборки обычно покрываются с обеих сторон масляно-канифольным изоляционным лаком. Сердечники машин малой мощности иногда собираются из листов без лакового покрытия, так как в этом случае достаточной изоляцией является естественный или искусственно созданный слой окислов на поверхности листов стали.

На рис. 19-2 представлена фотография асинхронного двигателя малой мощности в разобранном виде, на которой видны статор, ротор и подшипниковые щиты. На рис. 19-3 дан чертеж асинхронного двигателя средней мощности.

Сердечник статора закрепляется в корпусе, а сердечник ротора — на валу (машины малой и средней мощности) или на ободе с крестовиной и втулкой, надетой на зал (машины большой мощности). Вал ротора вращается в подшипниках, которые помещаются в подшипниковых щитах, прикрепляемых к корпусу статора (машины малой и средней мощности), или на отдельно стоящих подшипниковых стояках.

На внутренней цилиндрической поверхности статора и на внешней цилиндрической же поверхности ротора имеются пазы, в которых размещаются проводники обмоток статора и ротора.

Обмотка статора выполняется обычно трехфазной, присоединяется к сети трехфазного тока и называется поэтому также первичной обмоткой. Обмотка ротора тоже может быть выполнена трехфазной аналогично обмотке статора. Концы фаз такой обмотки ротора соединяются обычно в звезду, а начала с помощью контактных колец и металлографитных щеток выводятся наружу (рис. 19-3). Такая асинхронная машина называется машиной с фазным ротором. К контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Фазная обмотка ротора выполняется с тем же числом полюсов магнитного поля, как и статор.

Другая разновидность обмотки ротора — обмотка в виде беличьей клетки (рис. 19-4). При этом в каждом пазу находится медный или алюминиевый стержень и концы всех стержней с обоих торцов ротора соединены с медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Стержни от сердечника обычно не изолируются.

В машинах мощностью до 100 кВт стержни и кольца вместе с крылышками для вентиляции обычно изготовляются путем заливки ротора алюминием (см. рис. 19-2). Такая асинхронная машина называется машиной е короткозамкнутым ротором. Большинство асинхронных машин, в особенности машины малой и средней мощности, выпускается с короткозамкнутым ротором.

Воздушный зазор между статором и ротором в асинхронных машинах выполняется минимально возможным по условиям производства и надежности работы и тем больше, чем крупнее машины. В машинах мощностью в несколько киловатт величина зазора составляет 0,4—0,5 мм, а в машинах большой мощности — несколько миллиметров.

Асинхронные машины, как правило, охлаждаются воздухом. Системы вентиляции в принципе являются такими же, как и у машин постоянного тока.

Принцип действия асинхронной машины. Магнитный поток Ф1 создаваемый обмоткой статора, при своем вращении пересекает проводники обмотки ротора, индуктирует в них э. д. с. e12, и если обмотка ротора замкнута, то в ней возникают токи i2, частота которых f2 при неподвижном роторе (п = 0) равна первичной частоте f1.

Если обмотка ротора является трехфазной, то в ней индуктируется трехфазных ток. Этот ток создает вращающийся поток ротора Ф2, число полюсов 2 р, направление и скорость вращения которого при п = 0

такие же, как и у потока статора. Поэтому потоки Ф1 и Ф2 вращаются синхронно и образуют общий вращающийся поток двигателя Ф. При короткозамкнутом роторе в его стержнях индуктируется многофазная система токов.

В результате взаимодействия токов ротора с потоком возникают действующие на проводники ротора механические силы F и вращающий электромагнитный момент М.

Вращающий момент создается только активной составляющей тока ротора

Этот вывод имеет общий характер и справедлив также для других видов машин переменного тока.

Цепь ротора асинхронного двигателя всегда обладает определенным активным сопротивлением, и поэтому при пуске двигателя (п = 0) всегда 0 < ψ2 < 90°, В результате развиваемый момент М > 0, и если он больше статического тормозного момента на валу, то ротор двигателя придет во вращение в направлении вращения поля с некоторой скоростью п < п1 т. е. будет вращаться с некоторым отставанием, или скольжением, относительно поля статора.

Относительная разность скоростей вращения поля и ротора

называется скольжением. Скольжение выражается также в процентах:

Скорость ротора n, выраженная через скольжение s, согласно формуле (19-6), равна

При пуске двигателя (п = 0) имеем s = 1, а при вращении ротора синхронного с полем статора или, как говорят, с синхронной скоростью (п = n1) будет s = 0. При п = n1 магнитное поле статора относительно ротора неподвижно и токи в роторе индуктироваться не будут, поэтому М = 0 и такой скорости вращения двигатель достичь не может. Вследствие этого в режиме двигателя всегда 0 < n < n1 и 1 > s > 0.

При вращении ротора в сторону поля частота пересечения полем проводников ротора пропорциональна разности скоростей n1п и частота тока в обмотке ротора

Подставив сюда значение п из формулы (19-7) и затем значение п1 из (19-2), получим

т. е. вторичная частота пропорциональна скольжению.

При частоте тока f2 < f1 скорость вращения поля ротора относительно самого ротора n2p также меньше п1 и на основании выражения (19-9)

Скорость вращения поля ротора относительно статора в соответствии с выражениями (19-7) и (19-10)

т. е. скорость вращения поля ротора относительно статора при любой скорости вращения ротора п равна скорости вращения поля статора п1. Поэтому поля статора и ротора при вращающемся роторе также вращаются всегда синхронно и образуют общее вращающееся поле.

Если ротор асинхронной машины с помощью внешней силы (вращающего момента) привести во вращение в направлении вращения поля статора со скоростью выше синхронной (п > п1), то ротор будет обгонять поле и направления индуктируемых в обмотке ротора токов изменяется на обратные. При этом изменяется на обратные также направления электромагнитных сил F и электромагнитного момента М. Момент М при этом будет тормозящим, а машина будет работать в режиме генератора и отдавать активную мощность в сеть. Согласно выражению (19-6), в режиме генератора s < 0.

Если ротор вращать в направлении, обратном направлению вращения поля статора (п < 0), то указанные направления е2, i2 и F сохраняется. Электромагнитный момент М будет действовать в направлении вращения поля статора, но будет тормозить вращение ротора. Этот режим работы асинхронной машины называется режимом противовключения или режимом электромагнитного тормоза. В этом режиме в соответствии с выражением (19-6) s > 1.

Устройство и принцип действия синхронной машины

Устройство и принцип действия. Статор синхронной машины (рис. 19-8) имеет такое же устройство, как и статор асинхронной машины. Трехфазная или в общем случае m-фазная обмотка статора синхронной машины выполняется с таким же числом полюсов, как и ротор, и называется также обмоткой якоря. Сердечник статора вместе с обмоткой называется также якорем. На рис. 19-8 условно показаны только выводные концы А, В, С обмотки статора.

Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника. В качестве источника чаще всего служит генератор постоянного тока относительно небольшой мощности (0,3—3,0% от мощности синхронной машины), который называется возбудителем и устанавливается обычно на одном валу с синхронной машиной.

Назначение обмотки возбуждения — создание в машине первичного магнитного поля. Ротор вместе со своей обмоткой возбуждения называется также индуктором. При изготовлении синхронных машин принимаются меры к тому, чтобы распределение индукций поля возбуждения вдоль окружности статора было по возможности близко к синусоидальному.

Если ротор синхронной машины (рис. 19-8) привести во вращение с некоторой скоростью п об/сек и возбудить его, то поток возбуждения Фf будет пересекать проводники обмотки статора и в фазах последней будут индуктироваться э. д. с. с частотой

Э. д. с. статора составляют симметричную трехфазную систему э. д. с. и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузится симметричной системой токов. Машина при этом будет работать в режиме генератора.

При нагрузке обмотка статора создает такое же по своему характеру вращающееся магнитное поле, как и обмотка статора асинхронной машины. Это поле статора вращается в направлении вращения ротора со скоростью

Если подставить сюда f1 из формулы (19-12), то получим

Поля статора и ротора вращаются с одинаковой скоростью и образуют, таким образом, общее вращающееся поле, как и в асинхронной машине.

Поле статора (якоря) оказывает воздействие на поле ротора (индуктора) и называется в связи с этим также полем реакции якоря.

Синхронная машина может работать и в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

Из формулы (19-12) следует, что чем больше число пар полюсов синхронной машины p, тем меньше должна быть ее скорость вращения п для получения заданной частоты f1.

По своей конструкции синхронные машины подразделяются на явнополюсные и неявнополюсные.

Явнополюсные синхронные машины (рис. 19-8, а) имеют выступающие полюсы и изготовляются с числом полюсов 2р ≥ 4.

Сердечники полюсов явнополюсных машин набираются из листов стали толщиной 1—2 мм и стягиваются с помощью шпилек. В средних и крупных машинах полюсы крепятся к выступам вала, к втулке вала или к ободу крестовины с помощью Т-образных хвостов. В малых машинах полюсы крепятся также с помощью болтов. Обмотка возбуждения крупных машин наматывается из голой полосовой меди на ребро, и проводники обмотки изолируются друг от друга изоляционными прокладками.

В полюсных наконечниках синхронных двигателей, в соответствующих пазах, помещаются стержни пусковой обмотки из материала с повышенным удельным сопротивлением (латунь и др.), которые привариваются по торцам к короткозамыкающим сегментам, а последние соединяются в общие короткозамыкающие кольца. Такая обмотка напоминает беличью клетку короткозамкнутого асинхронного двигателя и служит для асинхронного пуска синхронного двигателя. Такие же по конструкции обмотки, но из медных стержней изготовляются нередко в синхронных генераторах и называются в этом случае успокоительными или демпферными обмотками. В последнее время полюсы синхронных двигателей часто делают также массивными из стальных поковок, и в этом случае роль пусковой обмотки выполняют сами массивные полюсы. Торцы наконечников соседних полюсов при этом соединяются проводниками в виде планок.

Явнополюсные синхронные машины мощностью до 10-12 кВт имеют иногда также так называемую обращенную конструкцию, когда индуктор (полюсы) является неподвижным, а якорь вращается. Такие машины напоминают по устройству машины постоянного тока, у которых коллектор заменен тремя контактными кольцами для отвода тока из обмотки якоря. Для крупных машин обращенная конструкция невыгодна, так как отвод из обмотки якоря больших токов при высоком напряжении с помощью колец и щеток чрезвычайно затруднителен, и сложно осуществить надежную изоляцию вращающейся якорной обмотки высокого напряжения.

Явнополюсные синхронные машины с горизонтальным валом широко используются в качестве двигателей и генераторов, в частности в качестве так называемых дизель-генераторов, соединяемых с дизельными двигателями внутреннего сгорания. Во избежание затруднений, которые могут возникнуть при работе дизель-генератора вследствие неравномерности вращающего момента дизеля как поршневой машины, дизель-генератор снабжается маховиком или его ротор выполняется с повышенным маховым моментом (моментом инерции). Аналогичную конструкцию имеют также синхронные двигатели, предназначенные для привода поршневых компрессоров.

Синхронные генераторы, сочленяемые с гидравлическими турбинами, работающими на гидроэлектростанциях, называются гидрогенераторами. Они имеют явнополюсную конструкцию и при мощностях до нескольких тысяч киловатт чаше всего также выполняются с горизонтальным валом. В последние годы все большее применение начинают находить так называемые капсульные гидрогенераторы (рис. 19-11), также имеющие горизонтальный вал.

Такие генераторы заключаются в водонепроницаемую оболочку, или капсулу, которая с внешней стороны обтекается потоком воды, проходящим через турбину. Такая конструкция применяется для низконапорных гидростанций и позволяет отказаться от машинного зала и достичь большей компактности станции, что приводит к ее удешевлению. Капсульные гидрогенераторы изготовляются на мощности до нескольких десятков тысяч киловатт.

Вертикальные гидрогенераторы представляют собой особый класс явнополюсных синхронных машин, которые имеют вертикальный вал и соединяются непосредственно с гидравлическими турбинами.

Гидравлические турбины в зависимости от напора воды и мощностей имеют обычно относительно малую скорость вращения (n = 60 ÷ 500 об/мин). Скорость вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и вес, а также большое количество полюсов. Изготовлены уникальные и самые крупные в мире гидрогенераторы мощностью до 500 000 кВт.

Весьма ответственной частью вертикального гидрогенератора является упорный подшипник, или подпятник, который воспринимает веса вращающихся частей генератора и турбины, а также давление воды на лопасти турбины. Поэтому на подпятник действуют огромные усилия. Особенно трудны условия работы подпятника при пуске и тем более при остановке агрегата, так как при малой скорости вращения масляный клин (пленка) между скользящими поверхностями подпятника не образуется и генератор с турбиной не «всплывают». Вследствие большой инерции гидроагрегата время его выбега (остановки) при закрытии воды и отключении от сети велико. Для уменьшения продолжительности вращения агрегата с низкой скоростью при его остановке применяются тормоза. Кроме подпятников, гидрогенераторы имеют также направляющие подшипники, которые воспринимают радиальные усилия.

На одном валу с гидрогенератором, в верхней его части, в большинстве случаев устанавливаются также вспомогательные машины; возбудитель генератора и регуляторный генератор, который представляет собой небольшой синхронный генератор с полюсами в виде постоянных магнитов и предназначен для питания двигателей масляного автоматического регулятора турбины.

В крупных машинах возбудитель нередко заменяют вспомогательным синхронным генератором, который служит как для возбуждения (вместе с ртутными выпрямителями или возбудительными агрегатами, состоящими из двигателя переменного тока и генератора постоянного тока), так и для питания различных двигателей, обслуживающих гидроагрегат, состоящий из турбины и гидрогенератора.

По своей конструкции вертикальные гидрогенераторы подразделяются на подвесные и зонтичные.

При аварийном отключении гидрогенератора от сети его скорость сильно возрастает, так как быстрое прекращение доступа большой массы воды в турбину невозможно, а подача энергии в сеть прекращается Достигаемая при этом максимальная, так называемая угонная, скорость может в два и более раз превысить номинальную. Поэтому механическая прочность машины рассчитывается на эту скорость.

С вертикальным валом изготовляются также мощные синхронные двигатели для привода больших гидравлических насосов.

Неявнополюсные синхронные машины имеют цилиндрический ротор, выполняемый обычно из массивной стальной поковки. В роторе фрезеруются пазы для укладки обмотки возбуждения. Эти машины выпускаются с числом полюсов = 2 и = 4 и имеют, поэтому, большие скорости вращения (при f = 50 Гц соответственно 3000 и 1500 об/мин). Изготовление крупных машин с такими скоростями вращения при явнополюсной конструкции по условиям механической прочности ротора и крепления его полюсов и обмотки возбуждения невозможно.

Основными представителями неявнополюсных машин являются турбогенераторы, т.е, синхронные генераторы, предназначенные для непосредственного соединения с работающими на тепловых электростанциях паровыми турбинами. В настоящее время большинство турбогенераторов выполняется двухполюсными, так как паровые турбины являются в принципе быстроходными машинами, а при больших скоростях вращения их технико-экономические показатели выше. Однако для атомных электростанций с водо-водяными реакторами выпускаются также четырёхполюсные турбогенераторы.

Роторы турбогенераторов большой мощности изготовляются из цельных поковок высококачественной хромоникелевой или хромоникельмолибденовой стали. Однако и при этом предельный диаметр активной части ротора при пН = 3000 об/мин по условиям механической прочности из-за больших центробежных сил не превышает 1,20 – 1,30 м. В связи с этим роторы мощных машин приходится делать длинными. В то же время увеличение длины ротора ограничено пределом увеличения гибкости и прогиба ротора и пределом связанного с этим увеличения его вибрации. Наибольшая возможная активная длина ротора составляет l ≈ 7,5—8,5 м.

Таким образом, предельные размеры турбогенераторов ограничены возможностями современной металлургии. Поэтому увеличение предельных мощностей турбогенераторов связано с увеличением электромагнитных нагрузок (линейные нагрузки и плотности тока обмоток) а интенсификацией способов охлаждения.

Обмотка ротора турбогенератора выполняется в виде концентрических катушек и закрепляется в пазах немагнитными металлическими клиньями (дюралюминий и т. д.), которые обладают требуемой механической прочностью и воспринимают весьма большие центробежные силы обмотки возбуждения. Немагнитные клинья предотвращают возникновение больших магнитных потоков рассеяния, замыкающихся вокруг лазов через клинья и вызывающих излишнее насыщение зубцов и уменьшение полезного потока, проходящего через воздушный зазор в статор. Примерно одна треть каждого полюсного деления ротора свободна от пазов и составляет так называемый большой зуб.

Обмотки ротора имеют миканитовую или другую изоляцию класса В или F. Лобовые части обмотки ротора закрываются прочным кольцеобразным стальным бандажом, рассчитанным на действие центробежных сил лобовых частей обмотки и самого бандажа.

Весьма серьезной является проблема охлаждения турбогенератора.

Турбогенераторы мощностью до 30 тыс. кВт выполняются с замкнутой системой воздушного охлаждения, а при PН ≥ 30 тыс. кВт воздушная охлаждающая среда заменяется водородом с избыточным давлением около 0,05 атм. во избежание засасывания воздуха через уплотнения и образования гремучей смеси. Применение водорода позволяет усилить съем тепла, повысить мощность при заданных размерах машины и уменьшить вентиляционные потери.

Создание турбогенераторов с РН > 150 000 кВт требует дальнейшей интенсификации методов охлаждения. При этом идут по пути увеличений давления водорода в корпусе до 3—5 атм. При дальнейшем увеличении мощности Н ≥ 300 тыс. кВт) необходимо перейти к наиболее эффективному способу съема тепла — к внутреннему охлаждению проводников обмоток водородом или водой. Для этой цели применяются полые проводники.

При РН ≥ 500 000 кВт иногда переходят к охлаждению полых проводников ротора водой. Обмотки статоров турбогенераторов выполняются с внутренним охлаждением проводников водой при РН ≥ 300 000 кВт.

Выше указаны номинальные мощности турбогенераторов, при которых необходимо переходить к более интенсивным способам охлаждения, так как в противном случае достижение этих мощностей при наибольших допустимых размерах машины невозможно. Однако переход к более интенсивным способам охлаждения целесообразен и при меньших мощностях, так как это позволяет уменьшить размеры машины, ее вес и стоимость. Этот путь в последнее время и используется на практике. Отметим, что непосредственное охлаждение обмоток водой начинают применять также в мощных гидрогенераторах.

Предельная мощность турбогенератора при внутреннем водяном охлаждении ротора составляет 2000—2500 МВт. При переходе к еще большим мощностям необходимо использовать криогенные турбогенераторы, в которых применяются сверхпроводниковые обмотки возбуждения и чья конструкция весьма существенно отличается от конструкции обычных турбогенераторов.

С неявнополюсными роторами изготовляются также мощные синхронные двигатели при 2р = 2. По аналогии с турбогенераторами такие двигатели называют иногда также турбодвигателями или турбомоторами.

Особенности устройства многофазных коллекторных машин переменного тока

В разное время был разработан целый ряд различных разновидностей трехфазных коллекторных машин переменного тока. Однако в основе действия каждой из них лежит действие коллектора как преобразователя частоты, благодаря чему частота тока во внешней цепи ротора, за коллектором, не зависит от скорости вращения ротора и всегда равна частоте тока статора. Это обстоятельство в свою очередь позволяет осуществлять электрическую связь цепей статора и ротора и путем видоизменения этой связи придавать машине особые свойства в отношении регулирования скорости вращения и т. д.

Типичная конструкция трехфазной коллекторной машины включает в себя: 1) статор с трехфазной обмоткой, аналогичный статору асинхронной или синхронной машины; 2) ротор, аналогичный якорю машины постоянного тока, и с такой же обмоткой, соединенной с коллектором. На коллекторе на каждом двойном полюсном делении вместо двух щеточных пальцев, как у машины постоянного тока, устанавливаются три щеточных пальца, причем щетки щеточных пальцев каждой фазы соединяются с помощью перемычек параллельно, как и в машине постоянного тока. Кроме того, на статоре и роторе могут быть и некоторые дополнительные обмотки.

Соединенная с коллектором замкнутая якорная обмотка при установке на коллекторе, как указано выше, трехфазного комплекта щеток, сдвинутых относительно друг друга на 120° эл. (рис. 19-21), представляет собой трехфазную обмотку, соединенную в треугольник. Токи через щетки А, В, С равны разностям токов фаз ia, ib, ic.

При вращении якоря положение каждой фазы обмотки неизменно и секции обмотки переходят поочередно из одних фаз в другие. При установке шестифазного комплекта щеток, сдвинутых относительно друг друга на 60° эл., получается шестифазная обмотка, соединенная в многоугольник.

Поясним работу коллектора как преобразователя частоты.

На рис. 19-22 схематически изображена машина постоянного тока. Когда ее щетки и полюсы неподвижны (nЩ = пФ = 0), а якорь вращается со скоростью n, то в обмотке якоря индуктируются э. д. с, (ток) частоты

в то время как во внешней цепи якоря и щеток частота fЩ = 0. Таким образом, в данном случае коллектор превращает ток с частотой fЯ внутри якоря в ток с частотой fЩ = 0 во внешней цепи или наоборот.

Если теперь с помощью подходящего механизма привести щетки во вращение со скоростью nЩ, то полярность щеток будет меняться с частотой

и во внешней цепи получим ток частоты fЩ. Таким образом, теперь коллектор преобразовывает ток с частотой fЯ внутри якоря в ток с частотой fЩ ≠ 0 во внешней цепи или наоборот.

Очевидно, что частота fЩ во внешней цепи не изменится, если вместо щеток вращать полюсы со скоростью nФ = nЩ. При этом изменятся лишь частота в самой обмотке якоря

и величина индуктируемой в ней э. д. с. Такое преобразование частот будет происходить и тогда, когда вместо машины постоянного тока с вращающимися полюсами будем иметь статор многофазной машины переменного тока, который питается током с частотой f1 и создает магнитное поле со скоростью вращения

Подставив nФ = nЩ из (19-16) в (19-14), получим fЩ = f1, т.е. частоты тока статора и тока внешней цепи ротора равны.

Таким образом, частота на щетках многофазной коллекторной машины определяется скоростью вращения магнитного потока относительно неподвижных щеток.

Отметим, что знак плюс в выражении (19-15) относится к случаю встречных направлений вращения ротора и поля, а знак минус — к случаю согласных направлений их вращения.

ОБМОТКИ ПЕРЕМЕННОГО ТОКА

Общие замечания. При конструировании машин переменного тока стремятся к тому, чтобы индуктируемые в обмотках э. д. с. были синусоидальными. Если э. д. с. индуктируются вращающимся магнитным полем, то для этого необходимо, чтобы распределение магнитной индукции вдоль воздушного зазора было также синусоидальным.

Получение вполне синусоидального распределения магнитного поля практически невозможно, однако для приближения к этой цели применяются различные меры конструктивного характера. Например, для улучшения кривой поля возбуждения явнополюсных синхронных генераторов их полюсные наконечники обычно выполняют с радиусом, несколько меньшим, чем радиус воздушного зазора, в результате чего величина зазора у края наконечника больше, чем по его середине. Тем не менее и в этом случае кривая поля наряду с основной гармоникой (ν = 1) содержит другие нечетные гармоники (ν = 3, 5, 7…), амплитуды которых уменьшаются с увеличением их порядка ν.

Общие сведения о трехфазных обмотках. Обмотки переменного тока подразделяются на однослойные и двухслойные. B современных машинах переменного тока применяются, преимущественно, двухслойные обмотки.

В двухслойных обмотках, как и в якорных обмотках машин постоянного тока, стороны катушек лежат в пазах в два слоя и каждая катушка одной стороной лежит в верхнем, а другой стороной — в нижнем слое. При этом все катушки имеют одинаковые размеры и форму.

Широкое применение двухслойных обмоток объясняется следующими их преимуществами: 1) возможностью укорочения шага на любое число зубцовых делений, что выгодно с точки зрения подавления высших гармоник э. д. с. и н. с. обмоток и уменьшения расхода обмоточного провода; 2) одинаковыми размерами и формами всех катушек, что упрощает и облегчает изготовление обмоток; 3) относительно простой формой лобовых частей катушек, что также упрощает изготовление обмотки.

Как и якорные обмотки машин постоянного тока, двухслойные обмотки переменного тока делятся на петлевые и волновые, которые в электромагнитном отношении равноценны. Преимущественно применяются петлевые обмотки. Волновые же обмотки используются обычно при числе витков в катушке wК = 1.

Выполнение обмоток переменного тока

Формы сечения пазов обмоток статоров машин переменного тока показаны на рис, 21-24. Полузакрытые пазы обычно применяются для обмоток статоров машин мощностью до 100 кВт (при 1500 об/мин) и напряжением до 650 В. При этом обмотка обычно изолируется от стенок паза посредством трехслойной пазовой коробочки (два слоя электротехнического картона с одним слоем лакоткани или синтетической пленки посередине) толщиной 0,35—0,65 мм на сторону. В заранее изолированные пазы укладывается так называемая мягкая всыпная обмотка, т.е. обмотка из круглых проводников диаметром до 2,2— 2,5 мм. Отдельные проводники опускаются при этом в паз по одному через щель паза. Если сечение фазы должно быть больше сечения одного такого проводника, то обмотка изготовляется с необходимым количеством параллельных ветвей. Если же и эта мера недостаточна, то каждый виток выполняется из нескольких параллельных проводников. Такие обмотки имеют изоляцию класса А. Плотность тока в таких обмотках j = 5,0 ÷ 6,5А/мм2, а при РН < 0,6 кВт и больше.

Полуоткрытые пазы применяются для машин большой мощности (до 300—400 кВт при 1500 об/мин) при напряжениях до 650В. В этом случае катушка по ширине паза состоит из двух полукатушек, которые наматываются из прямоугольного провода на соответствующих шаблонах и опускаются в паз по отдельности. Высоту проводника в радиальном направлении машины при f = 50 Гц во избежание больших потерь па вихревые токи берут обычно не больше 5 мм. Если достаточного сечения фазы при этом не получается, то обмотка выполняется с параллельными ветвями. Плотность тока в таких обмотках 4,0—5,5 А/мм2.

В машинах с большей мощностью и с большим напряжением, чем указано выше, применяются открытые пазы. Обмотка при этом также выполняется из прямоугольных проводников, но катушки изолируются еще до их укладки в пазы. При этом применяется как изоляция класса А, так и изоляция более высоких классов, чаще всего класса В. Машины с повышенной надежностью (например, для шахт) изготовляются с изоляцией высоких классов также и при меньших мощностях, и в этом случае тоже применяются открытые пазы.

Обмотки с изоляцией класса А укрепляются в пазах с помощью промасленных деревянных (бук) или фибровых клиньев. При более высоких классах изоляции применяются текстолитовые, гетинаксовые или стеклотекстолитовые клинья.

Лобовые части фазных роторных обмоток опираются на обмоткодержатели и укрепляются сверху с помощью проволочных бандажей, как и у якорей машин постоянного тока. Лобовые части обмоток статора в малых машинах не имеют особого крепления. В машинах большой мощности лобовые части крепятся с учетом того, что при коротких замыканиях, когда возникают наибольшие электромагнитные силы, между лобовыми частями обмоток ротора и статора возникают силы отталкивания. При этом применяются бандажные кольца из стали, дюралюминия или бронзы, к которым во избежание их смещения привязывают лобовые части.

Из обмоток крупных машин с целью устройства релейной защиты выводятся все шесть концов (начала и концы фаз), а во многих случаях также концы отдельных параллельных ветвей. Начало и конец первой фазы обмотки маркируются С1, С4, второй фазы — С2, С5 и третьей фазы — СЗ, С6.

На практике предпочитают соединение трехфазных обмоток в звезду. Однако асинхронные двигатели малой мощности для большей универсальности их применения в сетях с различными напряжениями обычно изготовляются на два напряжения, отличающихся друг от друга в раза (220 и 380 В или 380 и 650 В). При большем напряжении обмотка статора этих двигателей соединяется в звезду, а при меньшем — в треугольник. В сверхмощных машинах на лобовые части действуют весьма большие усилия, и необходимы еще более совершенные крепления обмоток.

В мощных машинах токи велики (многие сотни и тысячи Ампер) и сечение витков обмотки статора, даже при устройстве в обмотке параллельных ветвей, получается настолько большим, что изготовление их из массивных проводников ввиду сильного поверхностного эффекта и связанного с этим увеличения потерь недопустимо.

Поверхностный эффект возникает вследствие того, что проводник с током в пазу создает вокруг себя так называемый поток рассеяния, который сцепляется с нижней частью проводника в большей степени, чем с верхней. Вследствие этого э. д. с. самоиндукции, индуктируемая этим потоком, в нижней части проводника также больше, чем в верхней, и плотность тока j в верхней части проводника больше, т. е, ток вытесняется к верхней части проводника. Подобное же вытеснение тока происходит и тогда, когда в пазу имеются два или несколько проводников большого сечения.

Для достижения практически равномерного распределения тока проводник большого сечения необходимо подразделить на ряд элементарных изолированных параллельных проводников достаточно малого сечения (до 15 мм2), которые нужно переплести (транспонировать) так, чтобы каждый проводник занимал на протяжении длины паза поочередно все положения по высоте такого составного проводника.

Стержни фазных роторов асинхронных машин делаются всегда массивными, и поэтому для крупных машин необходимо считаться с наличием достаточно сильного поверхностного эффекта в роторе при пуске (f = 50 Гц).

В высоковольтных обмотках (при UЛ.Н. > 6 кВ) нередко наблюдается явление электрической короны, вызванное большими напряженностями электрического поля вблизи поверхностей изоляции катушек. При короне воздух ионизируется, образуется озон, который является активным окислительным элементом и вызывает окисление азота. Ввиду наличия влаги образуются азотистая и азотная кислоты, которые разрушают изоляцию. Для предотвращения появления корону поверхность изоляции покрывается слоем полупроводящего лака, который вызывает перераспределение электрического поля. Этот лак содержит обычно сажу.

Режимы работы асинхронной машины

Двигательный режим (0 < s < 1). Асинхронный двигатель потребляет из сети активную мощность

К.п.д. двигателей мощностью PН = 1 ÷ 1000 кВт при номинальной нагрузке находится соответственно в пределах ηН = 0,72 ÷ 0,95. Более высокие к.п.д. имеют двигатели большей мощности и с большей скоростью вращения.

Генераторный режим (— ∞ < s < 0). Для осуществления генераторного режима работы асинхронной машины ее нужно включить в сеть переменного тока и вращать с помощью соответствующего приводного двигателя (машина постоянного тока, тепловой или гидравлический двигатель) в сторону вращения магнитного поля со скоростью п, превышающей синхронную скорость п1. Скольжение машины при этом отрицательно.

Теоретически скорость п может изменяться в пределах n1 < n < ∞ , чему соответствует изменение скольжения в пределах 0 > s > — ∞. В действительности высокие скорости вращения недопустимs по условиям механической прочности, а по условиям ограничения потерь и нагревания и сохранения высокого к. п. д. в генераторном режиме возможны абсолютные значения скольжения такого же порядка, как и в двигательном режиме.

Режим противовключения (1 < s < ∞). В этом режиме ротор приключенной к сети асинхронной машины вращается за счет подводимой извне к ротору механической энергии против вращения поля, вследствие чего скорость вращения ротора n < 0 и s > 1. На практике в этом режиме обычно 1 < s < 2.

В режиме противовключения машина потребляет из сети активную мощность и развивает положительный вращающий момент, действующий в сторону вращения поля. Но, поскольку ротор вращается в обратном направлении, на него этот момент действует тормозящим образом.

В режиме противовключения машина потребляет также механическую мощность с вала или с ротора, поскольку внешний вращающий момент действует в сторону вращения ротора. Как мощность, потребляемая из сети, так и мощность, потребляемая с вала, расходуются на потери в машине. Полезной мощности машина поэтому не развивает, а в отношении нагрева рассматриваемый режим является тяжелым. Поэтому при U1 = U рассматриваемый режим допускается лишь кратковременно.

Режим противовключения на практике используется для торможения и остановки асинхронных двигателей и приводимых ими в движение производственных механизмов. Например, в ряде случаев, при необходимости быстрой остановки двигателя, путем переключения двух питающих проводов трехфазного двигателя изменяют чередование фаз и направление вращения воля, а ротор в течение некоторого времени вращается при этом по инерции в прежнем направлении, т. е. теперь уже против поля. При п = 0 машину необходимо отключить от сети, так как иначе она придет во вращение в обратном направлении. Таким же образом может осуществляться быстрый реверс (изменение направления вращения) двигателя, прячем в этом случае, естественно, при п = 0 отключать двигатель от сети не нужно. В начале процесса реверсирования также существует режим противовключения.

Режим противовключения называют также режимом электромагнитного тормоза.

Режим короткого замыкания. Режимом короткого замыкания асинхронной машины называется ее режим при s = 1, т. е. при неподвижном роторе. Этот режим соответствует начальному моменту пуска асинхронного двигателя из неподвижного состояния. Сопротивление асинхронной машины относительно невелико, поэтому ток короткого замыкания при номинальном напряжении I = (5 ÷ 7) IН.

Механическая характеристика асинхронного двигателя представляет собой зависимость скорости вращения п от развиваемого момента на валу М2 при U1 = const и f1 = const:

или, наоборот,

Вид механических характеристик существенно зависит от величины вторичного активного сопротивления.

Процесс пуска и установившийся режим работы асинхронного двигателя. Рассмотрим процесс пуска асинхронного двигателя с короткозамкнутой вторичной обмоткой при его включении на полное напряжение сети. Так производится пуск подавляющего большинства находящихся в эксплуатации асинхронных двигателей. При рассмотрении процесса пуска не будем принимать во внимание электромагнитные переходные процессы, связанные с тем, что при включении любой электрической цепи электромагнитного механизма под напряжение и при изменении режима его работы токи достигают практически установившихся значений не сразу, а после истечения некоторого времени, величина которого пропорциональна электромагнитной постоянной времени Т, зависящей от индуктивности и активного сопротивления цепи. Обычно при пуске асинхронного двигателя время его разбега до нормальной скорости значительно больше длительности электромагнитных переходных процессов, и поэтому влияние этих процессов на процесс пуска невелико. Следовательно, процесс пуска можно рассматривать на основе полученных выше зависимостей для вращающего момента и токов в условиях работы двигателя при установившемся режиме с заданным скольжением.

На рис. 25-4 показана механическая характеристика M = f(n) асинхронного двигателя и механическая характеристика МСТ = f(n) некоторого производственного механизма, приводимого во вращение двигателем.

Уравнение моментов агрегата «двигатель — производственный механизм» имеет вид

где

представляет собой динамический вращающий момент агрегата, пропорциональный моменту его инерции J.

Если при п = 0, как это показано на рис. 25-4, пусковой момент МП > МСТ то МДИН > 0, dn/dt > 0 и ротор двигателя придет во вращение. Ускорение ротора происходит до тех пор, пока (заштрихованная область на рис. 25-4)

В точке 1 (рис. 25-4) достигается равновесие моментов

При этом МДИН = 0, dn/dt = 0 и наступает установившийся режим работы двигателя под нагрузкой со скоростью вращения п’ и скольжением s’. Величина s’ будет тем больше, чем больше МСТ и чем больше, следовательно, нагрузка двигателя. Если при работе двигателя его нагрузку (статический, момент производственного механизма МСТ) увеличить (кривая 2 на рис. 25-4), то s возрастет, а п уменьшится. При уменьшении нагрузки (кривая 3 на рис. 25-4), наоборот, s уменьшится, а n увеличится.

Переход двигателя к новому установившемуся режиму работы при изменении нагрузки физически происходит следующим образом. Если МСТ возрастет, то будет М < M, МДИН < 0, dn/dt < 0 и движение ротора двигателя станет замедляться. При этом скольжение возрастает, в соответствии с чем увеличиваются также э. д. с. E2S и ток I2 вторичной цепи. В результате электромагнитный момент М увеличивается и уменьшение п (увеличение s) происходит до тех пор, пока снова не наступит равенство моментов М = MСТ. При уменьшении нагрузки процесс протекает в обратном направлении.

Как видно из рис. 25-4, при круто поднимающейся начальной (левой) части кривой момента М = f (s) асинхронный двигатель обладает жесткой механической характеристикой, т. е. при изменении нагрузки скорость вращения двигателя изменяется мало. Все нормальные асинхронные двигатели строятся с жесткой механической характеристикой, при этом двигатель имеет высокий к. п. д.

Условия устойчивой работы. В общем случае, как показано на рис. 25-5, характеристики двигателя М = f(п) и производственного механизма МСТ = f(n) могут иметь несколько точек пересечения.

В точках 1 и 3

и в этих точках работа устойчива, а в точке 2

и работа неустойчива.

При пуске из неподвижного состояния двигатель достигает устойчивой скорости вращения в точке п'” (рис. 25-5) и дальнейшее увеличение п невозможно, так как влево от этой точки MСТ > М. Если бы двигатель работал в режиме, соответствующем точке 2 (рис. 25-5), то при малейших нарушениях режима и изменении п соотношения между М и MСТ стали бы такими, что двигатель перешел бы на работу в режиме, соответствующем одной из устойчивых точек 1 или 3. Режим работы в точке 3 на практике неприемлем, так как характеризуется малой скоростью вращения, плохим к. п. д. и наличием больших токов в обмотках, вследствие чего двигатель быстро перегревается и выходит из строя. Поэтому нормальной устойчивой областью работы двигателя считается участок механической характеристики влево от точки 4 (рис. 25-4), когда 0 < s < sm.

Перегрузочная способность асинхронного двигателя. При работе двигателя на нормальном устойчивом участке механической характеристики (влево от точек 4 на рис. 25-4 и 25-5) его нагрузку, определяемую статическим моментом МCT рабочего механизма или машины, можно постепенно поднять до величины MСТ = Мт (точки 4 на рис. 25-4 и 25-5), причем устойчивая работа сохраняется вплоть до этой точки. При дальнейшем увеличении нагрузки, когда MСТ > Мт, двигатель будет быстро затормаживаться и либо остановится, либо при характеристиках вида рис. 25-5 перейдет в устойчивый режим работы при малой скорости вращения. В обоих случаях, если двигатель не будет отключен, возникает опасный в отношении нагрева режим.

Таким образом, в принципе работа асинхронного двигателя возможна при 0 < М < Мт. Однако продолжительная работа при М ≈ Мт в отношении нагрева также недопустима.

Кроме того, при работе двигателя необходимо иметь некоторый запас по моменту, так как возможны кратковременные перегрузки случайного характера, а также кратковременные или длительные понижения напряжения сети.

Так как Mm ≈ U12, то при уменьшении U1, например, на 15% максимальный момент двигателя снизится до 0,852 = 0,72 или 72% от своего первоначального значения,

В связи с изложенным, всегда должно быть Мт > MH.

Отношение максимального момента при номинальном напряжении к номинальному

определяет перегрузочную способность двигателя и называется кратностью максимального момента.

Согласно ГОСТ для двигателей разных мощностей и скоростей вращения требуется, чтобы km > 1,7 ÷ 2,2. Меньший предел относится к двигателям со скоростью вращения п ≤ 750 об/мин.

Кратности начального пускового момента и пускового тока.

Часто асинхронные двигатели можно пускать в ход на холостом ходу или с малой нагрузкой на валу и нагружать их до номинальной или иной мощности после достижения нормальной скорости вращения. В других случаях рабочие механизмы и машины (например, вентиляторы) имеют механическую характеристику МCT = f (n) такого вида, что при п = 0 статический момент MСТ мал и постепенно повышается с увеличением п. При этом не требуется, чтобы двигатель развивал большой пусковой момент. Однако иногда двигатели необходимо пускать в ход под значительной нагрузкой (например, крановые механизмы, подъемники, различные мельницы и т. д.), и в этих случаях требуется, чтобы двигатели имели большие пусковые моменты.

Асинхронные двигатели с фазным ротором можно пускать в ход с помощью реостата, включаемого на время пуска во вторичную цепь двигателя. При этом пусковой момент двигателя увеличивается, а пусковой ток уменьшается.

Согласно ГОСТ короткозамкнутые асинхронные двигатели должны иметь при пуске под номинальным напряжением кратность начального пускового момента МП

(s = 1, п = 0)

не менее 0,7—1,8. Меньшие значения относятся к двигателям большей мощности. Кратность пускового тока

для двигателей с короткозамкнутым ротором разных мощностей и разных скоростей вращения при этом должна быть не больше 5,5—7,0.

Пригодность асинхронных двигателей с короткозамкнутым ротором и с постоянными параметрами в качестве двигателей общего назначения. Как уже указывалось, для получения хорошего к. п. д. асинхронные двигатели должны работать при номинальной нагрузке с малым скольжением (s = 0,02 ÷ 0,05) и иметь, таким образом, жесткую механическую характеристику (sm = 0,06 ÷ 0,15). Это требование для двигателей с короткозамкнутым ротором и с постоянными параметрами вступает в противоречие с требованием о достаточной величине пускового момента двигателя. Действительно, пусковой момент при этих условиях получается недостаточно большим.

В связи с этим двигатели общего назначения с короткозамкнутым ротором строятся исключительно как двигатели с переменными параметрами. При этом для увеличения активного сопротивления ротора в период пуска и для увеличения тем самым MП используется явление поверхностного эффекта или вытеснения тока в обмотке ротора.

Рабочие характеристики асинхронного двигателя.

Рабочими характеристиками асинхронного двигателя называют зависимости потребляемой мощности Р1, первичного тока I1, коэффициента мощности cos φ1, момента на валу М2, скольжения s и к. п. д. η от полезной мощности Р2 при работе с номинальным напряжением и частотой. Рабочие характеристики позволяют находить все основные величины, определяющие режим работы двигателя при различных нагрузках. Эти характеристики можно построить по расчетным данным при проектировании двигателя, по данным непосредственной нагрузки двигателя или по данным круговой диаграммы, построенной на основе опытов холостого хода и короткого замыкания.

Если известны параметры двигателя, то можно воспользоваться схемой замещения и, задавшись рядом значений скольжения в ожидаемых пределах его изменения, рассчитать сначала токи, а затем все другие величины.

На рис, 26-13 изображены рабочие характеристики асинхронного двигателя мощностью 15 кВт. При Р2 = 0 величины I1 и cos φ1 соответствуют режиму холостого хода.

АСИНХРОННЫЕ ДВИГАТЕЛИ С ВЫТЕСНЕНИЕМ ТОКА В ОБМОТКЕ РОТОРА

Глубокопазные двигатели. Устройство и принцип работы.

Для достижения хорошего к. п. д. асинхронные двигатели должны иметь малое скольжение (sH ≈ 0,02 ÷ 0,05), в соответствии с чем активное сопротивление обмоток ротора r2 у них должно быть достаточно мало. Однако, пусковой момент двигателя с таким сопротивлением обмотки ротора будет значительно меньше номинального. Это исключает возможность пуска таких двигателей с короткозамкнутым ротором под нагрузкой, а искажение кривой момента под воздействием высших гармоник поля может вызвать затруднения даже при пуске с небольшой нагрузкой. Для получения достаточного пускового момента необходимо увеличить r2. Таким образом, возникает задача создания таких асинхронных двигателей с короткозамкнутым ротором, у которых активное сопротивление обмотки ротора при пуске достаточно велико и уменьшается при переходе к нормальному режиму работы. Эту задачу решают путем использования эффекта вытеснения тока в обмотке ротора, применяя обмотку специальной конструкции.

Одной из разновидностей таких двигателей являются двигатели с глубокими пазами на роторе (рис. 27-1, а) и высокими (30—60 мм) стержнями беличьей клетки. Вытеснение тока в стержнях клетки происходит в результате действия э. д. с., индуктируемых пазовыми потоками рассеяния Фσ. Можно представить себе, что стержень (рис. 27-1, а) состоит из множества волокон, включенных параллельно. Нижние волокна охватываются большим, а верхние волокна — малым количеством линий потока Фσ. При пуске, когда частота в роторе велика (f2 = f1), в нижних волокнах стержня индуктируется большая э.д.с. самоиндукции, чем в верхних, в плотность тока распределяется по высоте проводника весьма неравномерно (рис. 27-1, б). Можно также сказать, что такое неравномерное распределение тока обусловлено тем, что нижние волокна стержня имеют большее индуктивное сопротивление, чем верхние. Таким образом, ток в стержне вытесняется по направлению к воздушному зазору, что в сущности и есть проявление поверхностного эффекта в проводниках, утопленных в ферромагнитную среду.

Под влиянием вытеснения тока, или поверхностного эффекта, активное сопротивление стержня при пуске двигателя становится большим.

Несколько упрощенно можно представить себе, что при пуске работает только верхняя часть стержня и его рабочее сечение уменьшается. Одновременно при вытеснении тока уменьшается также индуктивное сопротивление рассеяния стержня, так как поток Фσ в нижней части стержня вследствие уменьшения в ней тока ослабляется. В результате увеличения при пуске активного сопротивления стержня rст и уменьшения его сопротивления рассеяния хσ сг уменьшается угол сдвига фаз ψ2 между э. д. с. стержня, индуктируемой вращающимся полем, и током стержня, что и приводит к увеличению пускового момента.

По мере разбега двигателя при его пуске частота тока в роторе уменьшается и по достижении номинальной скорости вращения становится весьма малой (f2 = sНf1 ≤ 1 ÷ 3 Гц). При этом э. д. с., индуктируемые потоком Фσ становятся малыми, явление вытеснения тока практически исчезает и ток распределяется равномерно по сечению стержня. Активное сопротивление стержня при этом становится малым, и двигатель работает с хорошим к. п. д.

К. п. д. глубокопазных двигателей имеет такую же величину, как и к. п. д. двигателей с фазным или короткозамкнутым ротором без проявления вытеснения тока. Однако cos φ глубокопазных двигателей на 0,02—0,04 меньше, так как обмотка ротора вследствие глубокого ее утопления в сердечнике имеет повышенное сопротивление рассеяния, В связи с этим кратность максимального момента глубокопазных двигателей также несколько меньше. В то же время у глубокопазных двигателей по сравнению с обычными двигателями кратность пускового момента больше, а кратность пускового тока меньше.

Обычно у глубокопазных двигателей

На рис. 27-4 изображены характерные кривые моментов М = f(s) глубокопазного двигателя (кривая 2) и двигателя без явления вытеснения тока в обмотке ротора (кривая 1).

Двухклеточные двигатели

Устройство и принцип работы. Двухклеточные двигатели имеют на роторе две короткозамкнутые беличьи клетки, одна из которых представляет собой так называемую пусковую обмотку, а вторая — рабочую. Рабочая обмотка выполняется из медных стержней и размещается в нижних частях пазов, а пусковая обмотка изготовляется из латунных или бронзовых стержней и располагается в верхних частях пазов, ближе к воздушному зазору (рис. 27-5, а слева). Сечение стержней пусковой обмотки может быть несколько меньше, чем у рабочей обмотки. Однако сечение и теплоемкость стержней пусковой обмотки должны быть достаточно велики, чтобы предотвратить чрезмерный нагрев этой обмотки при пуске. Иногда рабочую и пусковую обмотки размещают в отдельных пазах (рис, 27-5, а справа).

В связи со сказанным активное сопротивление пусковой обмотки rП обычно в 2—4 раза больше активного сопротивления rР рабочей обмотки. Наоборот, индуктивное сопротивление рассеяния пусковой обмотки хσП в несколько раз меньше, чем хσР рабочей обмотки, поскольку последняя утоплена глубоко в стали сердечника ротора.

Вращающееся магнитное поле двигателя индуктирует в обеих обмотках ротора одинаковые э. д. с.

При пуске вследствие большой частоты тока ротора индуктивное сопротивление рабочей обмотки относительно велико и значительно больше полного сопротивления пусковой обмотки. Поэтому при пуске нагружена током в основном только пусковая обмотка, и ввиду большой величины ее активного сопротивления двигатель развивает большой пусковой момент. При разбеге двигателя частота тока ротора уменьшается, и при нормальной скорости вращения (s = 0,02 ÷ 0,05) индуктивные сопротивления рассеяния обмоток ротора будут в 20—50 раз меньше, чем при пуске. Поэтому в рабочем режиме активные сопротивления обмоток ротора значительно больше индуктивных и полные сопротивления обмотки определяются величинами активных сопротивлений. Вследствие этого при работе двигателя полное сопротивление рабочей обмотки значительно меньше, чем полное сопротивление пусковой, и током нагружена главным образом рабочая обмотка. Ввиду малости активного сопротивления этой обмотки двигатель имеет хороший к. п. д.

Таким образом, в двухклеточном двигателе при пуске происходит вытеснение тока ротора по направлению к воздушному зазору, как и в глубокопазном двигателе.

В пусковой обмотке двухклечного двигателя при тяжелых условиях пуска (большой маховой момент приводимого агрегата и пуск под нагрузкой) выделяется большое количество тепла, и эта обмотка при пуске соответственно удлиняется, в то время как рабочая обмотка при пуске остается холодной и не удлиняется. Поэтому во избежание нарушения сварных соединений стержней с торцовыми короткозамыкающими кольцами стержни пусковой и рабочей обмоток присоединяются к отдельным кольцам (рис. 27-5, 6).

Двухклеточные двигатели были предложены М. О. Доливо-Добровольским еще в 1893 г., однако широкое практическое применение их началось на 25—30 лет позднее.

Для величин к. п. д., cos φ, максимального и пускового моментов и пускового тока в общем действительны замечания, сделанные в конце в отношении глубокопазного двигателя. Необходимо, однако, отметить, что при проектировании двухклеточных двигателей имеется возможность варьировать в определенных пределах сечения и удельные сопротивления стержней отдельных клеток, а также глубину утопления рабочей клетки. В связи с этим кратности пусковых моментов и токов у двухклеточных двигателей могут изменяться в более широких пределах. Обычно у двухклеточных двигателей

Характерный вид зависимости М = f (s) двухклеточного двигателя представлен на рис. 27-4 (кривая 3).

Другие разновидности асинхронных двигателей с вытеснением тока.

Асинхронные двигатели отечественного производства.

Из числа других конструктивных вариантов двигателей с вытеснением тока наряду с рассмотренными, наибольшее распространение получили двигатели с колбовидной и трапецеидальной формой пазов (рис. 27-9). Форма выполнения короткозамкнутых колец при колбовидной форме пазов показана на рис. 27-9 справа.

Утолщение нижней части стержней (рис. 27-9) усиливает эффект изменения сопротивлений при вытеснении тока по сравнению с глубокопазным двигателем (рис. 27-1). Поэтому двигатели с пазами по схеме рис. 27-9 приближаются по своим свойствам к двухклеточпым двигателям. В то же время в технологическом отношении изготовление двигателей с пазами по схеме рис. 27-9 проще, чем двухклеточных. Наряду с двигателями с колбовидной и трапецеидальной формой паза для тяжелых условий пуска строятся также двухклеточные двигатели. Для двигателей с РН > 100 кВт и ≥ 6 обычно применяются роторы с глубокими пазами.

В двигателях с короткозамкнутым ротором при = 2 роторы часто приходится выполнять с круглыми пазами, так как небольшая высота ярма ротора не позволяет применять рассмотренные выше формы пазов. В этом случае короткозамыкающие кольца на обоих торцах ротора охватываются массивными стальными кольцами. При пуске токи в короткозамыкающих кольцах индуктируют в стальных кольцах большие токи, и в стальных кольцах возникают значительные потери. Это эквивалентно увеличению активного сопротивления вторичной обмотки, что приводит к увеличению пускового момента. В рабочем же режиме вследствие малой частоты токи, индуктируемые в стальных кольцах, незначительны. Поэтому такие двигатели по своим свойствам приближаются к глубокопазным.

В асинхронных двигателях с короткозамкнутым ротором мощностью 100—150 кВт и ниже обмотка ротора выполняется путем алюминиевой заливки. При этом с целью использования явления вытеснения тока и улучшения пусковых характеристик применяются вытянутые в радиальном направлении пазы той или иной формы (рис. 27-10), которые заливаются алюминием по всему сечению. Одновременно отливаются также короткозамыкающие кольца с вентиляционными лопатками.

В связи с изложенным необходимо отметить, что во всех изготовляемых асинхронных двигателях с короткозамкнутым ротором мощностью от 500—600 Вт и выше используется явление вытеснения тока.

Асинхронные двигатели изготовляются в виде унифицированных серий. Наиболее массовым является выпуск двигателей общепромышленного назначения с номинальными мощностями 0,6—100 кВт. В течение ряда лет на такие мощности выпускались двигатели с короткозамкнутым ротором серии А и АО, а в настоящее время выпускаются двигатели модернизированной серии А2 и АО2 с улучшенными технико-экономическими показателями (А и А2 — защищенного исполнения, АО и АО2 — закрытого обдуваемого исполнения). Роторы всех двигателей серии имеют алюминиевую заливку.

На базе нормальных двигателей серии А2 и АО2, с использованием их основных деталей и узлов, предусматривается также специальное исполнение двигателей: 1) с повышенным пусковым моментом, 2) с повышенным скольжением, 3) для текстильной промышленности, 4) многоскоростных, 5) с фазным ротором, а также ряд других специальных исполнений (малошумные на подшипниках скольжения, со встроенным электромагнитным тормозом, рудничные, для тропического климата и др.).

ПУСК ТРЕХФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И

РЕГУЛИРОВАНИЕ ИХ СКОРОСТИ ВРАЩЕНИЯ

Способы пуска асинхронных двигателей

Общая характеристика вопроса. Прямой пуск. При рассмотрении возможных способов пуска в ход асинхронных двигателей необходимо учитывать следующие основные положения: 1) двигатель должен развивать при пуске достаточно большой пусковой момент, который должен быть больше статического момента сопротивления на валу, чтобы ротор двигателя мог прийти во вращение и достичь номинальной скорости вращения; 2) величина пускового тока должна быть ограничена таким значением, чтобы не происходило повреждения двигателя и нарушения нормального режима работы сети; 3) схема пуска должна быть по возможности простой, а количество и стоимость пусковых устройств — малыми.

При пуске асинхронного двигателя на холостом ходу в активном сопротивлении его вторичной цепи выделяется тепловая энергия, равная кинетической энергии приводимых во вращение маховых масс, а при пуске под нагрузкой количество выделяемой энергии соответственно увеличивается. Выделение энергии в первичной цепи обычно несколько больше, чем во вторичной. При частых пусках, а также при весьма тяжелых условиях пуска, когда маховые массы приводимых в движение механизмов велики, возникает опасность перегрева обмоток двигателя. Подробно динамика движения электропривода и энергетические соотношения при пуске рассматриваются в курсах электропривода. Число пусков асинхронного двигателя в час, допустимое по условиям его нагрева, тем больше, чем меньше номинальная мощность двигателя и чем меньше соединенные с его валом маховые массы. Двигатели мощностью 3—10 кВт в обычных условиях допускают до 5—10 включений в час.

Асинхронные двигатели с короткозамкнутым ротором проще по устройству и обслуживанию, а также дешевле и надежнее в работе, чем двигатели с фазным ротором.

Поэтому всюду, где это возможно, применяются двигатели с короткозамкнутым ротором и подавляющее большинство находящихся в эксплуатации асинхронных двигателей являются двигателями с короткозамкнутым ротором.

Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора (рис. 28-1, а). Такой пуск называется прямым.

При этом пусковой ток двигателя IП = (4 ÷ 7,0) IН.

Современные асинхронные двигатели с короткозамкнутым ротором проектируются с таким расчетом, чтобы они по величине возникающих при пуске электродинамических усилий, действующих на обмотки, и по условиям нагрева обмоток допускали прямой пуск. Поэтому прямой пуск всегда возможен, когда сеть достаточно мощна и пусковые токи двигателей не вызывают недопустимо больших падений напряжения в сети (не более 10—15%). Современные энергетические системы, сети и сетевые трансформаторные подстанции обычно имеют такие мощности, что в подавляющем большинстве случаев возможен прямой пуск асинхронных двигателей.

Нормальным способом пуска двигателей с короткозамкнутым ротором поэтому является прямой пуск. Нередко таким образом осуществляется пуск двигателей мощностью в тысячи киловатт.

Если по условиям падения напряжения в сети прямой пуск двигателя с короткозамкнутым ротором невозможен, применяются различные способы пуска двигателя при пониженном напряжении (рис. 28-1, 6, в и г).

Однако при этом пропорционально квадрату напряжения на зажимах обмотки статора или квадрату пускового тока двигателя понижается также пусковой момент, что является недостатком пуска при пониженном напряжении.

Поэтому эти способы пуска применимы, когда возможен пуск двигателя на холостом ходу или под неполной нагрузкой. Необходимость пуска при пониженном напряжении встречается чаще всего у мощных высоковольтных двигателей.

Реакторный пуск осуществляется согласно схеме рис. 28-1,6. Сначала включается выключатель В1, и двигатель получает питание через трехфазный реактор (реактивную или индуктивную катушку) Р, сопротивление которого хр ограничивает величину пускового тока. По достижении нормальной скорости вращения включается выключатель В2, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.

Пусковые реакторы строятся обычно с ферромагнитным сердечником и рассчитываются по нагреву только на кратковременную работу, что позволяет снизить их вес и стоимость. Для весьма мощных двигателей применяются также реакторы без ферромагнитного сердечника, с обмотками, укрепленными, на бетонном каркасе. Выключатель В1 выбирается на такую отключающую мощность, которая позволяет отключить двигатель при глухом коротком замыкании за выключателем, а выключатель В2 может иметь низкую отключающую мощность.

Автотрансформаторный пуск осуществляется по схеме рис. 28-1, в в следующем порядке. Сначала включаются выключатели В1 и В2, и на двигатель через автотрансформатор AT подается пониженное напряжение. После достижения двигателем определенной скорости выключатель В2 отключается, и двигатель получает питание через часть обмотки автотрансформатора AT, который в этом случае работает как реактор. Наконец включается выключатель B3, в результате чего двигатель получает полное напряжение.

Таким образом, при автотрансформаторном пуске МП и IП.С. уменьшаются в одинаковое число раз. В то же время при реакторном пуске пусковой ток двигателей IП.Д. является также пусковым током в сети IП.С. и пусковой момент МП уменьшается быстрее пускового тока (в квадратичном отношении). Поэтому при одинаковых величинах IП.С. при автотрансформаторном пуске пусковой момент будет больше. Однако это преимущество автотрансформаторного пуска достигается ценой значительного усложнения и удорожания пусковой аппаратуры. Поэтому автотрансформаторный пуск применяется реже реакторного, при более тяжелых условиях, когда реакторный пуск не обеспечивает необходимого пускового момента.

Пуск переключением «звезда — треугольник» (рис. 28-1, г) может применяться в случаях, когда выведены все шесть концов обмотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 В и с соединением обмоток Y/Δ работает от сети 220 В. В этом случае при пуске обмотка статора включается в звезду (нижнее положение переключателя П на рис. 28-1, г), а при достижении нормальной скорости вращения переключается в треугольник (верхнее положение переключателя П на рис. 28-1, г). При таком способе пуска, по сравнению с прямым пуском при соединении обмотки в треугольник, напряжение фаз обмоток уменьшается в раза, пусковой момент уменьшается в ( )2 = 3 раза, пусковой ток в фазах обмотки уменьшается в раза, а в сети — в * = 3 раза. Таким образом, рассматриваемый способ пуска равноценен автотрансформаторному пуску при kАТ = .

Недостатком этого способа пуска по сравнению с реакторным и автотрансформаторным является то, что при пусковых переключениях цепь двигателя разрывается, что связано с возникновением коммутационных перенапряжений. Этот способ ранее широко применялся при пуске низковольтных двигателей, однако с увеличением мощности сетей потерял свое прежнее значение и в настоящее время используется сравнительно редко.

Пуск двигателя с фазным ротором с помощью пускового реостата. Двигатели с фазным ротором применяются значительно реже двигателей с короткозамкнутым ротором. Они используются в следующих случаях: 1) когда двигатели с короткозамкнутым ротором неприемлемы по условиям регулирования их скорости вращения; 2) когда статический момент сопротивления на валу при пуске МСТ велик и поэтому асинхронный двигатель с короткозамкнутым ротором с пуском при пониженном напряжении неприемлем, а прямой пуск такого двигателя недопустим по условиям воздействия больших пусковых токов на сеть; 3) когда приводимые в движение массы настолько велики, что выделяемая во вторичной цепи двигателя тепловая энергия вызывает недопустимый нагрев обмотки ротора в виде беличьей клетки.

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора (рис. 28-3). Применяются проволочные, с литыми чугунными элементами, а также жидкостные реостаты. По условиям нагрева реостаты рассчитываются на кратковременную работу. Сопротивления металлических реостатов для охлаждения обычно помещают в бак с трансформаторным маслом. Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически (в автоматизированных установках) с помощью контакторов или контроллера с электрическим приводом. Жидкостный реостат представляет собой сосуд с электролитом (например, водный раствор соды или поваренной соли), в который опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов.

Рассмотрим пуск двигателя с фазным ротором с помощью ступенчатого металлического реостата (рис. 28-3), управляемого контакторами К.

Перед пуском щетки должны быть опущены на контактные кольца ротора, а все ступени реостата включены. Далее в процессе пуска поочередно включаются контакторы КЗ, К2, К1. Характеристики вращающего момента двигателя М = f (s) и вторичного тока I2 = f (s) при работе на разных ступенях реостата изображены на рис. 28-4, а и б. Предположим, что сопротивления ступеней пускового реостата и интервалы времени переключения ступеней подобраны так, что момент двигателя М при пуске меняется в пределах от некоторого MМАКС до некоторого ММИН и при включении в сеть МП = ММАКС > МСТ (кривая 3 на рис. 28-4, а). В начале пуска двигатель работает по характеристике 3, ротор приходит во вращение, скольжение s начинает уменьшаться, и при s = s3, когда М = ММИН производится переключение реостата на вторую ступень. При этом двигатель будет работать по характеристике 2, и при дальнейшем разбеге двигателя скольжение уменьшится от s = s3 до s = s2, а момент — от значения М = MМАКС до М = ММИН. Затем производится переключение на первую ступень и т. д. После выключения последней ступени реостата двигатель переходит на работу по естественной характеристике 0 и достигает установившейся скорости вращения.

При наличии у двигателя короткозамыкающего механизма после окончания пуска щетки с помощью этого механизма поднимаются с контактных колец и кольца замыкаются накоротко, а реостат возвращается в пусковое положение. Тем самым пусковая аппаратура приводится в готовность к следующему пуску. Необходимо отметить, что дистанционное управление короткозамыкающим механизмом контактных колец сложно осуществить; это затрудняет автоматическое управление двигателем. Поэтому в последнее время фазные асинхронные двигатели строятся без таких механизмов. При этом щетки постоянно налегают на контактные кольца, что несколько увеличивает потери двигателя и износ щеток. Количество ступеней пускового реостата с целью упрощения схемы пуска и удешевления аппаратуры в автоматизированных установках выбирается небольшим (обычно 2—3 ступени).

Пусковые характеристики асинхронного двигателя при реостатном пуске наиболее благоприятны, так как высокие значения моментов достигаются при невысоких значениях пусковых токов.

Самозапуск асинхронных двигателей. В электрических сетях в результате коротких замыканий случаются кратковременные, длительностью до нескольких секунд, большие понижения напряжения или перерывы питания. Включенные в сеть асинхронные двигатели при этом начинают затормаживаться и чаще всего полностью останавливаются. При восстановлении напряжения начинается одновременный самозапуск не отключившихся от сети двигателей. Такой самозапуск двигателей способствует быстрейшему восстановлению нормальной работы производственных механизмов и поэтому целесообразен, а в ряде случаев даже чрезвычайно желателен. Однако одновременный самозапуск большого количества асинхронных двигателей загружает сеть весьма большими токами, что вызывает в ней большие падения напряжения и задерживает процесс восстановления нормального напряжения. Время самозапуска двигателей при этом увеличивается, а в ряде случаев величина пускового момента недостаточна для пуска двигателя. Кроме того, самозапуск некоторых двигателей в подобных условиях недопустим или невозможен (например, двигатели с фазным ротором с пуском с помощью реостата и двигатели с короткозамкнутым ротором с пуском с помощью реакторов и автотрансформаторов, не снабженные специальной автоматической аппаратурой для автоматического самозапуска). Поэтому целесообразно возможность самозапуска использовать только для двигателей наиболее ответственных производственных механизмов, а все остальные двигатели снабдить релейной защитой для их отключения от сети при глубоких падениях напряжения. Самозапуск асинхронных двигателей широко применяется для двигателей механизмов электрических станций.

Регулирование скорости вращения асинхронных двигателей

с короткозамкнутым ротором

Общие положения.

Скорость вращения ротора асинхронного двигателя

Способы регулирования скорости вращения асинхронных двигателей, согласно выражению (28-3), можно подразделить на два класса: 1) регулирование скорости вращения первичного магнитного поля

что достигается либо регулированием первичной частоты f1 либо изменением числа пар полюсов р двигателя; 2) регулирование скольжения двигателя s при n1 = const. В первом случае к. п. д. двигателя остается высоким,, а во втором случае к. п. д. снижается тем больше, чем больше s, так как при этом мощность скольжения

теряется во вторичной цепи двигателя (мощность скольжения используется полезно только в каскадных установках).

Рассмотрим здесь главнейшие способы регулирования скорости вращения.

Регулирование скорости изменением первичной частоты (частотное регулирование) требует применения источников питания с регулируемой частотой (синхронные генераторы с переменной скоростью вращения, ионные или полупроводниковые преобразователи частоты и др.). Поэтому данный способ регулирования используется главным образом в случаях, когда для целых групп двигателей необходимо повышать (п > 3000 об/мин) скорости вращения (например, ручной металлообрабатывающий инструмент, некоторые механизмы деревообрабатывающей промышленности и др.) или одновременно и плавно их регулировать (например, двигатели рольгангов мощных прокатных станов и др.). С развитием полупроводниковых преобразователей все более перспективным становится также индивидуальное частотное регулирование скорости вращения двигателей. Управление инвертором при этом производится особым преобразователем частоты вне зависимости от положения ротора двигателя. Величина напряжения регулируется с помощью выпрямителя.

Если пренебречь относительно небольшим падением напряжения в первичной цепи асинхронного двигателя, то

Существенное изменение величины потока Ф при регулировании п нежелательно, так как увеличение Ф против нормального вызывает увеличение насыщения магнитной цепи и сильное увеличение намагничивающего тока, а уменьшение Ф вызывает недоиспользование машины, уменьшение перегрузочной способности и увеличение тока I2 при том же значении М. Поэтому в большинстве случаев целесообразно поддерживать Ф = const. При этом из соотношения (28-6) следует, что одновременно с регулированием частоты пропорционально ей необходимо изменять также напряжение, т. е. поддерживать

Отступление от этого правила целесообразно только в случаях, когда MCT быстро уменьшается с уменьшением п (например, приводы вентиляторов, когда МCT = п2). В этом случае более быстрое уменьшение U1 по сравнению с f1 вызывает уменьшение Ф и улучшает энергетические показатели двигателя и в то же время уменьшение Мт с точки зрения перегрузочной способности не опасно.

При широком диапазоне регулирования правильнее поддерживать

К недостаткам частотного регулирования относится громоздкость и высокая стоимость питающей установки.

Регулирование скорости изменением числа пар полюсов р используется обычно для двигателей с короткозамкнутым ротором, так как при этом требуется изменять р только для обмотки статора. Изменять р можно двумя способами: 1) применением на статоре нескольких обмоток, которые уложены в общих пазах и имеют разные числа пар полюсов р; 2) применением обмотки специального типа, которая позволяет получить различные значения р путем изменения (переключения) схемы соединений обмотки. Предложено значительное количество различных схем обмоток с переключением числа пар полюсов, однако широкое распространение из них получили только некоторые. Применение нескольких обмоток невыгодно, так как при этом из-за ограниченного места с пазах сечение проводников каждой из обмоток нужно уменьшать, что приводит к снижению мощности двигателя. Использование обмоток с переключением числа пар полюсов вызывает усложнение коммутационной аппаратуры, в особенности, если с помощью одной обмотки желают получить более двух скоростей вращения. Несколько ухудшаются также энергетические показатели двигателей.

Двигатели с изменением числа пар полюсов называются многоскоростными. Обычно они выпускаются на 2, 3 или 4 скорости вращения.

Многоскоростные двигатели применяются в металлорежущих и деревообрабатывающих станках, в грузовых и пассажирских лифтах, для приводов вентиляторов и насосов и в ряде других случаев.

При переключении многоскоростной обмотки магнитные индукции на отдельных участках магнитной цепи в общем случае изменяются, что необходимо иметь в виду при проектировании двигателя, чтобы, с одной стороны, добиться по возможности более полного использования материалов двигателя, а с другой не допустить чрезмерного насыщения магнитной цепи.

Вес и стоимость многоскоростных двигателей несколько больше, чем у нормальных асинхронных двигателей такой же мощности. Тем не менее это лучший и наиболее широко применяемый способ регулирования скорости короткозамкнутых двигателей.

Регулирование скорости уменьшением величины первичного напряжения. При уменьшении U1 момент двигателя изменяется пропорционально U12 и соответственно изменяются механические характеристики (рис. 28-10), в результате чего изменяются также значения рабочих скольжений s1, s2, s3 … при данном виде зависимости MCT= f(s). Очевидно, что регулирование s в этом случае возможно в пределах 0 < s < sm. Для получения достаточно большого диапазона регулирования скорости необходимо, чтобы активное сопротивление цепи ротора и соответственно sm были, достаточно велики (рис. 28-10, б).

Следует учитывать, что во вторичной цепи возникают потери, равные мощности скольжения PS и вызывающие повышенный нагрев ротора.

Этот метод регулирования скорости применяется также для двигателей с фазным ротором, причем в этом случае в цепь ротора включаются добавочные сопротивления.

В связи с пониженным к. п. д. и трудностями регулирования напряжения рассматриваемый метод применяется только для двигателей малой мощности. При этом для регулирования U1 можно использовать регулируемые автотрансформаторы или сопротивления, включенные последовательно в первичную цепь.

В последние годы для этой цели все чаще применяют (рис. 28-11) реакторы насыщения, регулируемые путем подмагничивания постоянным током. При изменении величины постоянного тока подмагничивания индуктивное сопротивление реактора изменяется, что приводит к изменению напряжения на зажимах двигателя. Путем автоматического регулирования тока подмагничивания можно расширить зону регулирования скорости в область s > sm и получить при этом жесткие механические характеристики.

Импульсное регулирование скорости (рис. 28-12) производится путем периодического включения двигателя в сеть и отключения его от сети или путем периодического шунтирования с помощью контактора К сопротивлений, включенных последовательно в цепь статора, или полупроводниковых вентилей. При этом двигатель беспрерывно находится в переходном режиме ускорения или замедления скорости вращения ротора и в зависимости от частоты и продолжительности импульсов работает с некоторой, приблизительно постоянной скоростью вращения. Подобное регулирование скорости применяется только для двигателей весьма малой мощности (РН<30 ÷ 50 Вт).

Регулирование скорости вращения асинхронных двигателей с фазным ротором

Для двигателей с фазным ротором можно в принципе использовать все те же способы регулирования скорости вращения, как и для двигателей с короткозамкнутым ротором. Однако на практике из числа этих способов для двигателей с фазным ротором применяется только способ регулирования скорости вращения с помощью реакторов насыщения.

Ниже рассмотрим способы регулирования скорости вращения, которые специфичны для двигателей с фазным ротором и в которых используется возможность включения регулирующих устройств во вторичную цепь.

Регулирование скорости вращения с помощью реостата в цепи ротора производится по той же схеме рис. 28-3, что и реостатный пуск двигателя, но реостат при этом должен быть рассчитан на длительную работу. При увеличении активного сопротивления вторичной цепи вид механической характеристики двигателя изменяется: характеристика становится более мягкой и скольжение двигателя при том же моменте нагрузки МСТ увеличивается.

Рассматриваемый способ регулирования скорости связан со значительными потерями энергии в сопротивлении rД и поэтому малоэкономичен. Он применяется главным образом при кратковременной или повторно-кратковременной работе (например, пуско-наладочные режимы некоторых машин, крановые устройства и пр.), а также в приводах с вентиляторным моментом. В последнем случае мощность на валу с уменьшением скорости быстро снижается, и поэтому мощность скольжения и потери в цепи ротора по величине ограничены.

К недостаткам реостатного регулирования скорости относятся также мягкость механических характеристик и зависимость диапазона регулирования от величины нагрузки. В частности, регулирование скорости на холостом ходу практически невозможно.

Регулирование скорости вращения посредством введения добавочной э. д. с. во вторичную цель двигателя.

Регулирование скорости вращения асинхронного двигателя путем увеличения его скольжения всегда связано с выделением во вторичной цепи двигателя значительной электрической мощности скольжения

большая часть которой при реостатном регулировании теряется в реостате. Поэтому, естественно, возникает мысль о полезном использовании этой мощности и о повышении таким образом к. п. д. установки.

Полезное использование мощности скольжения возможно, если вместо реостата присоединить к контактным кольцам фазного двигателя приемник электрической энергии в виде подходящей для этой цели вспомогательной электрической машины.

Эта машина будет работать в режиме двигателя и оказывать воздействие на регулируемый асинхронный двигатель, развивая напряжение на его вторичных зажимах, так как при вращении вспомогательной машины в ее якоре индуктируется э. д. с. Можно также сказать, что задачей вспомогательной машины, как и реостата при реостатном регулировании, является создание «подпора» напряжения на контактных кольцах регулируемого асинхронного двигателя, ибо наличие определенного напряжения на кольцах U2K — непременное условие выдачи с этих колец определенной мощности

во внешнюю цепь двигателя. Вместе с тем, вспомогательная машина в отличие от реостата позволяет полезно использовать эту мощность.

Таким образом, с помощью добавочной э. д. с. EД, путем изменения ее величины и направления, можно осуществить плавное двухзонное регулирование скорости двигателя: ниже и выше синхронной.

Если пренебречь потерями, то мощность источника добавочной э, д. с. равна мощности скольжения sPЭМ причем при s > 0 этот источник является приемником и потребляет энергию из вторичной цепи двигателя, а при s < 0 — генератором и отдает мощность во вторичную цепь двигателя. Механическая мощность, развиваемая магнитным полем двигателя,

при s > 0 будет меньше PЭМ а при s < 0 в соответствии с изменением знака мощности скольжения РМХ > РЭМ.

Каскад асинхронного двигателя с машиной постоянного тока. Реализация рассмотренного способа регулирования скорости вращения асинхронного двигателя посредством добавочной э. д. с. осуществляется в каскадных соединениях двигателя со вспомогательными электрическими машинами. Рассмотрим здесь каскадные соединения асинхронного двигателя с машиной постоянного тока.

На рис. 28-14, а показана схема каскада фазного асинхронного двигателя АД, приводящего в движение некоторую рабочую машину PM, с машиной постоянного тока независимого возбуждения МПТ. Цепь якоря МПТ приключена к контактным кольцам асинхронного двигателя через ионный или полупроводниковый выпрямитель В, соединенный по трехфазной мостовой схеме. Выпрямитель преобразовывает переменный ток частоты скольжения f2 = sf1 во вторичной цепи АД в постоянный ток в цепи якоря МПТ. Э. д. с. якоря МПТ в данном случае и является той рассмотренной выше добавочной э. д. с. EД, которая (в данном случае с помощью выпрямителя В) вводится во вторичную цепь двигателя АД. Регулирование величины этой э. д. с. и скорости вращения АД производится путем регулирования тока возбуждения МПТ.

На схеме рис. 28-14, а машина постоянного тока МПТ расположена на валу асинхронного двигателя АД. Она преобразовывает мощность скольжения PS, потребляемую из вторичной цепи АД, в механическую мощность, которая через вал двигателя АД вместе с механической мощностью РМХ двигателя передается рабочей машине РМ.

Такой каскад называется электромеханическим. Если при регулировании скорости вращения обеспечить полное использование мощности АД (Р1 = РН = const) и пренебречь потерями, то в этом каскаде мощность, передаваемая рабочей машине РМ,

также остается при всех скоростях постоянной и равной номинальной мощности. В связи с этим электромеханический каскад иногда условно называют также каскадом постоянной мощности. Необходимая номинальная мощность вспомогательной машины каскада (в данном случае МПТ) зависит от пределов регулирования скорости:

 

Каскад с выпрямителями допускает регулирование скорости только вниз от синхронной (s>0). Если заменить выпрямитель управляемым ионным или полупроводниковым преобразователем, способным производить также обратное преобразование — постоянного тока в переменный, то можно осуществить также регулирование скорости вверх от синхронной (s < 0). Указанные на рис. 28-14 направления передачи мощности скольжения при s < 0 изменятся на обратные. Ввиду сложности системы управления таким преобразователем и других причин эти каскады до сих пор применения не получили.

На рис. 28-14, б изображена схема каскада, которая отличается от схемы рис. 28-14, а тем, что МПТ соединена механически со вспомогательной асинхронной или синхронной машиной ВМ. В этом каскаде мощность скольжения РS при s > 0 передается с помощью ВМ, работающей в режиме генератора, обратно в сеть переменного тока. При s < 0 ВМ работает в режиме двигателя. Такой каскад называется электрическим. В этом каскаде машине РМ передается только механическая мощность двигателя АД,

которая при Р1 = РН = const уменьшается пропорционально скорости вращения. Момент на валу РМ при этом остается постоянным, вследствие чего такой каскад иногда условно называют также каскадом с постоянным моментом. Машины ВМ и МПТ на схеме рис. 28-14, б можно заменить трансформатором и полупроводниковым преобразователем постоянного тока в переменный и обратно.

Каскады позволяют осуществить экономичное и плавное регулирование скорости вращения асинхронного двигателя, однако вспомогательные машины и преобразователи удорожают установку. Поэтому каскады целесообразно применять только для привода мощных производственных механизмов, требующих регулирования скорости в достаточно широких пределах (например, прокатные станы, весьма мощные вентиляторы и др.). Рассмотренные выше каскадные соединения в связи с использованием в них ионных или полупроводниковых вентилей называют также вентильными каскадами.

Существуют также другие системы каскадов, в частности с использованием коллекторных машин переменного тока. Каскадные установки выполняются на мощности в сотни и тысячи киловатт с регулированием скорости вращения в пределах до 3 : 1 и больше.

Асинхронные машины с неподвижным ротором

Фазорегулятор (рис. 29-1, а) представляет собой асинхронную машину с фазным ротором, ротор которой заторможен и может быть вручную или с помощью вспомогательного (исполнительного) двигателя повернут относительно статора на 360° эл. Торможение и поворот ротора осуществляется обычно с помощью самотормозящейся червячной передачи. Первичная сторона фазорегулятора присоединяется к сети, а вторичная — к нагрузке (сопротивления ZНГ на рис, 29-1, а).

Фазорегулятор представляет собой в сущности поворотный трансформатор с регулируемой фазой вторичного напряжения относительно первичного. Фазорегуляторы находят применение главным образом в лабораториях, в частности, при испытании счетчиков электрической энергии и других приборов и аппаратов.

Необходимо иметь в виду, что на ротор фазорегулятора, когда он нагружен, действует вращающий момент. Это же относится и к другим рассматриваемым ниже машинам с заторможенным ротором.

Трехфазный индукционный регулятор служит для регулирования напряжения трехфазной сети переменного тока. Обмотки регулятора включаются по схеме автотрансформатора, и регулятор представляет собой, в сущности, поворотный автотрансформатор.

Схема соединений обмоток наиболее широко применяемого трехфазного индукционного регулятора представлена на рис. 29-2, а. Одна из обмоток (w1) является первичной и включается параллельно в сеть первичного напряжения U1, а вторичная обмотка (w2) включается в эту сеть последовательно. В качестве первичной обмотки обычно используют обмотку ротора, так как при этом необходимо вывести с помощью контактных колец и щеток или гибких проводников только три конца обмотки.

Однофазные сельсины

Сельсины (сокращение, происшедшее от английского слова selfsynchronizing — самосинхронизирующийся) применяются чаще всего для синхронного поворота или вращения двух или нескольких осей, не связанных друг с другом механически, а также для некоторых других целей.

Однофазные сельсины чаще всего имеют следующее устройство (рис. 31-8), На явно-выраженных полюсах статора расположена сосредоточенная обмотка возбуждения В, а в пазах цилиндрического ротора — три распределенные обмотки синхронизации С, которые сдвинуты относительно друг друга в пространстве на 120° эл. и вполне аналогичны трехфазной обмотке нормальной машины переменного тока. Обмотки ротора соединяются с внешними цепями с помощью контактных колец и щеток. Сердечники статора и ротора собраны из листовой электротехнической стали.

Рассмотрим работу однофазных сельсинов.

В индикаторном режиме работы (рис. 31-8) один сельсин-датчик Д управляет работой одного или нескольких сельсинов-приемников П. Обмотки возбуждения В этих сельсинов включаются в общую сеть, а обмотки синхронизации С соединяются друг с другом, как показано на рис. 31-8. Пульсирующее поле возбуждения индуктирует э. д. с. в «фазах» обмоток синхронизации. Если углы поворота соответствующих фаз датчика βД и приемника βП по отношению к осям полюсов одинаковы (βД = βП), то э. д. с. соединенных друг с другом «фаз» обмоток синхронизации также одинаковы:

и направлены встречно. При этом в обмотках синхронизации не возникает никаких токов и электромагнитные моменты сельсинов равны нулю. Если же роторы сельсинов будут занимать неодинаковое положение и поэтому тек называемый угол рассогласования

будет не равен нулю, то указанные выше равенства э. д. с. нарушатся, в обмотках синхронизации возникнут токи и на роторы сельсинов будут действовать электромагнитные моменты МД и МП. Более подробный анализ этого вопроса показывает, что моменты датчика и приемника имеют разные знаки и оба действуют в направлении уменьшения угла рассогласования Δβ. Если бы момент сопротивления на валу сельсина-приемника был равен нулю, то Δβ = 0 и ротор этого сельсина в точности воспроизводил бы движения ротора сельсина-датчика, притом не только в режиме медленного поворота ротора, но и при его вращении с определенной скоростью. В действительности на ротор сельсина-приемника действуют определенные, хотя и небольшие тормозные моменты. Это моменты от трения в подшипника, на контактных кольцах и о воздух в сельсине, а также небольшой момент сопротивления механизма, соединенного с валом сельсина-приемника (стрелка или шкала указательного прибора — индикатора, движок небольшого реостата и др.). Поэтому всегда существует небольшая ошибка Δβ в передаче угла. Некоторая ошибка возникает также в результате различных неточностей в изготовлении сельсинов, зубчатого строения их ротора и т. д.

Сельсины различных классов точности имеют максимально допустимые значения углов рассогласования (ошибок) в пределах 0,25—2,5°. Максимальный момент сельсинов-приемников обычно находится в пределах 200—2000 гс * см.

Бесконтактные сельсины (рис. 31-9), предложенные А. Г. Иосифьяном и А. Б. Свечарником в 1938 г., имеют то преимущество, что отсутствие скользящих щеточных контактов увеличивает надежность работы сельсинов и уменьшает их погрешности в виду уменьшения потерь на трение. В таких сельсинах обе обмотки размещаются на статоре 1, а ротор 3 не имеет обмоток. Обмотки синхронизации 5 этого сельсина располагаются на статоре, который по своей конструкции аналогичен статору асинхронного двигателя. Обмотка возбуждения 2 имеет вид кольцевых коаксиальных катушек, охватывающих ротор. Особенностью устройства ротора является то, что он имеет немагнитную часть 4, благодаря чему полюсы ротора в магнитном отношении разделены и поток Ф направляется из одного полюса ротора через неподвижный внешний магнитопровод 6 в другой полюс ротора и через ротор в статор. В результате этого при неподвижной обмотке возбуждения удается получить в воздушном зазоре между ротором и статором магнитное поле такого же вида, как и в обычном сельсине.

Бесконтактные сельсины получили значительное распространение, однако их недостатками являются: 1) усложнение конструкции, 2) удвоенная величина воздушных зазоров в магнитной цепи, 3) повышенные размеры и вес.

Сельсины также изготовляются для работы при f = 50 ÷ 1000 Гц.

МАГНИТНЫЕ ПОЛЯ И ОСНОВНЫЕ ПАРАМЕТРЫ СИНХРОННЫХ МАШИН

Магнитное поле и параметры обмотки возбуждения

Явнополюсная машина. Обмотка возбуждения создает магнитный поток возбуждения синхронной машины (рис. 32-1), который сцепляется с обмоткой якоря и индуктирует в ней э. д. с. Расчет магнитной цепи явнополюсной синхронной машины производится подобно расчету магнитной цепи машины постоянного тока. Магнитная характеристика Ф = f (if) синхронной машины имеет такой же вид, как и у других электрических машин. Величины, относящиеся к обмотке возбуждения синхронной машины, будем обозначать индексом f, как это принято в большинстве литературных источников.

На рис. 32-2, а изображена картина магнитного поля обмотки возбуждения в воздушном зазоре явнополюсной синхронной машины на протяжении одного полюсного деления. На рис. 32-2, б кривая 1 представляет собой распределение магнитной индукции поля возбуждения Bf на поверхности якоря (статора). Как уже указывалось, при проектировании синхронных машин принимаются меры к тому, чтобы эта кривая по возможности приближалась к синусоиде. Однако вполне синусоидального распределения Bf достичь невозможно.

Магнитное поле и параметры обмотки якоря

Общие положения.

При нагрузке обмотки якоря синхронной машины током она создает собственное магнитное поле, которое называется полем реакции якоря.

В нормальных машинах постоянного тока, с установкой щеток на геометрической нейтрали, поле реакции якоря является поперечным, т. е, действует поперек оси главных полюсов. Поэтому оно не индуктирует э. д. с. в обмотке якоря и оказывает относительно слабое влияние на величину потока в воздушном зазоре и на характеристики машины.

В отличие от машин постоянного тока в синхронной машине влияние реакции якоря на величину магнитного потока весьма значительно. Это обусловлено прежде всего тем, что в синхронной машине в общем случае возникает также значительная продольная реакция якоря усиливающая или ослабляющая поток полюсов. Кроме того, поле поперечной реакции якоря синхронной машины также индуктирует значительную э. д. с. в обмотке якоря.

Поэтому реакция якоря синхронной машины оказывает весьма значительное влияние на характеристики и поведение синхронной машины как при установившихся, так и при переходных режимах работы.

Индуктор (ротор) явнополюсной машины имеет магнитную несимметрию, так как ввиду наличия большого междуполюсного пространства магнитное сопротивление потоку, действующему по направлению поперечной оси q, т. е. по оси междуполюсного пространства, значительно больше магнитного сопротивления потоку, действующему по продольной оси d. Поэтому одинаковая по величине н. с. якоря при ее действии по продольной оси создает больший магнитный поток, чем при действии по поперечной оси. Кроме того, как ротор явнополюсной, так и ротор неявнополюсной машины имеют также электрическую несимметрию, так как их обмотки возбуждения расположены только по продольной оси d, т. е. создают поток, действующий по оси d, и сами сцепляются только с потоком якоря, действующим по этой же оси. Электрическая несимметрия индукторов синхронных машин существенным образом проявляется при несимметричных и переходных режимах их работы.

Характеристики синхронных генераторов

Среди разнообразных характеристик синхронных генераторов отдельную группу составляют характеристики, которые определяют зависимость между напряжением на зажимах якоря U, током якоря I и током возбуждения if при f = fH или п = пH и φ = const в установившемся режиме работы. Эти характеристики дают наглядное представление о ряде основных свойств синхронных генераторов.

Они могут быть построены по расчетным данным, с помощью векторных диаграмм, или по данным соответствующих опытов. Характеристики явнополюсных и неявнополюсных генераторов в основном одинаковы.

Схемы для снятия рассматриваемых ниже характеристик опытным путем изображены на рис. 33-5. На рис. 33-5, а обмотка якоря Я нагружается с помощью симметричных регулируемых нагрузочных сопротивлений ZНГ (например, трехфазный реостат и трехфазная индуктивная катушка, включаемые параллельно).

На рис. 33-5, б генератор нагружается на сеть UC через индукционный регулzтор напряжения, или регулируемый трехфазный трансформатор, или автотрансформатор РТ. Активная мощность генератора в обоих случаях регулируется путем изменения момента двигателя, вращающего генератор. В схеме рис. 33-5, б воздействие на РТ изменяет напряжение генератора и его реактивную мощность или cos φ. На практике удобно пользоваться схемой рис. 33-5, б.

На рис. 33-5 предполагается, что обмотка возбуждения ОВ питается от постороннего источника. Регулирование тока if в обоих производится с помощью реостата R. Величина cos φ проверяется по показаниям двух ваттметров.

Характеристика холостого хода

Характеристика холостого хода, дающая зависимость E0=f(iB) при I = 0 и f = fН, снимается в восходящей и нисходящей ветвях. Площадь, ограниченная этими кривыми, определяется величиной гистерезиса магнитной цепи ротора. При пользовании характеристикой холостого хода для построения диаграмм напряжения и других характеристик рекомендуется брать нисходящую ветвь с нулем, помещенным в точке пересечения кривой с осью абсцисс (рис. 11-1, сплошная кривая).

Характеристика холостого хода, а также и другие характеристики синхронного генератора могут быть построены в относительных единицах, чем достигается лучшая оценка свойств машины.

Однако при построении характеристики холостого хода за единицу обычно принимается не ток возбуждения i, а ток возбуждения iB0, соответствующий по характеристике холостого хода номинальному напряжению (рис. 11-1).

Характеристики короткого замыкания

Характеристика трехфазного короткого замыкания (рис. 11-3) снимается при замыкании зажимов всех фаз обмотки якоря накоротко (симметричное короткое замыкание) и определяет зависимость:

При коротком замыкании магнитная система машины оказывается ненасыщенной, и поэтому характеристика короткого замыкания носит прямолинейный характер и имеет изгиб только при величинах тока, значительно превышающих номинальный ток IH.

Получающиеся при двухфазном и однофазном коротком замыкании зависимости

носят также прямолинейный характер, но вследствие уменьшения величины реакции якоря характеристика IK2=f(iB) проходит выше характеристики IK3=f(iB), а характеристика IKl=f(iB) проходит выше характеристики IK2 = f(iB) (рис. 11-3).

Если снимать характеристики короткого замыкания при переменной скорости вращения, то ток короткого замыкания практически не будет зависеть от скорости вращения, так как индуктивные сопротивления и э. д. с., индуктированная обмоткой возбуждения, изменяются пропорционально частоте и, следовательно, пропорционально скорости вращения.

Только при очень малых частотах характеристика IК = f (n) дает при iВ = const перегиб, спускаясь при n = 0 к значению IК = 0, как это показано на рис. 11- 4.

Нагрузочные характеристики

Нагрузочные характеристики дают зависимость:

Наибольшее практическое значение имеет нагрузочная характеристика при cos φ ≈ 0 и φ ≈ π/2 > 0 (рис. 11-5).

Нагрузочные характеристики при cos φ = 0,8 (φ >0) и cos φ =1 проходят выше характеристики cos φ = 0 и не являются параллельными по отношению к характеристике холостого хода E0 = f(iB). Характеристики при cos φ = 0,8 и cos φ = 0, но при опережающем токе (φ <0) проходят выше характеристики холостого хода.

Внешняя характеристика определяет зависимость U = f (I) при if = const, cos φ = const, f = fН и показывает, как изменяется напряжение машины U при изменении величины нагрузки и неизменном токе возбуждения.

Вид внешних характеристик при разных характерах нагрузки показан на рис. 33-10, причем предполагается, что в каждом случае величина тока возбуждения отрегулирована так, что при I = IН также U = UH. Отметим, что величина if при номинальной нагрузке (U = UH, I = IH, cos φ = cos φн, f = fH) называется номинальным током возбуждения.

Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе (кривая 1 на рис. 33-10) существует значительная продольная размагничивающая реакция якоря, которая растет с увеличением тока нагрузки I, и поэтому U с увеличением I уменьшается. При чисто активной нагрузке (кривая 2 на рис. 33-10) также имеется продольная размагничивающая реакция якоря, но угол ψ между Е и I меньше, чем в предыдущем случае, поэтому продольная размагничивающая реакция якоря слабее и уменьшение U с увеличением I происходит медленнее. При опережающем токе (кривая 3 на рис. 33-10) возникает продольная намагничивающая реакция якоря, и поэтому с увеличением I напряжение U растет. Следует отметить, что значения if для трех характеристик 33-10 различны и наибольшее if соответствует характеристике 1.

Номинальное изменение напряжения синхронного генератора ΔUН — это изменение напряжения на зажимах генератора (при его работе отдельно от других генераторов) при изменении нагрузки от номинального значения до нуля и при неизменном токе возбуждения.

Синхронные генераторы обычно рассчитываются для работы с номинальной нагрузкой при отстающем токе и cos φ = 0,8. Согласно кривой 1 на рис. 33-10, при этом ΔUН>0. Величина ΔUН обычно

Регулировочная характеристика определяет зависимость if = f (I) при U = const, cosφ = const и f = const и показывает, как нужно регулировать ток возбуждения синхронного генератора, чтобы при изменении нагрузки его напряжение оставалось неизменным. Ввиду изменения внутреннего падения напряжения в РТ одновременно с регулировкой if приходится также несколько регулировать напряжение РТ, чтобы поддержать U = const. Вид регулировочных характеристик показан на рис. 33-11.

ЭЛЕМЕНТЫ ТЕОРИИ ПЕРЕХОДНЫХ ПРОЦЕССОВ

СИНХРОННЫХ МАШИН

Общая характеристика проблемы изучения переходных процессов

синхронных машин

При резких изменениях режима работы синхронной машины (наброс и сброс нагрузки, замыкание и размыкание электрических цепей обмоток, короткие замыкания в этих цепях и т. д.) возникают разнообразные переходные процессы. В современных энергетических системах работает совместно большое количество синхронных машин, причем мощности отдельных машин достигают 1,5 млн. кВт. Переходные процессы, возникающие в одной машине, могут оказать большое влияние на работу других машин и всей энергосистемы в целом, поскольку в этих машинах также возникают различные переходные процессы. Интенсивные переходные процессы нарушают работу энергосистемы в целом и могут вызвать серьезные аварии. Подобные аварии связаны с большими убытками, так как при них возможны повреждения дорогостоящего оборудования. Однако наибольшие убытки получаются в результате нарушения энергоснабжения крупных промышленных районов, когда недовырабатывается промышленная продукция.

По указанным причинам изучение переходных процессов синхронных машин имеет весьма большое практическое значение, так как позволяет правильно понимать эти процессы, предвидеть характер возможных аварий, принимать меры к предотвращению или ограничению действия аварий и быстрейшему устранению их последствий.

Следует отметить, что переходные процессы синхронных машин протекают весьма быстро, в течение нескольких секунд и даже долей секунды. Поэтому целенаправленные и согласованные действия эксплуатационного персонала энергетических систем в начальный и вместе с тем решающий период возникновения аварии невозможны. В связи с этим необходимо применять многочисленные и разнообразные средства автоматического управления и регулирования, чтобы воздействовать на возникшие переходные процессы в нужных направлениях.

Переходные процессы любого характера описываются дифференциальными уравнениями. Синхронные машины, как указывалось выше, имеют магнитную и электрическую несимметрию. Кроме того, обмотки якоря и индуктора связаны индуктивно и перемещаются относительно друг друга, а скорость вращения ротора в переходных режимах в общем случае непостоянна. В связи с этим дифференциальные уравнения синхронной машины имеют сложный вид. Кроме того, при совместной работе синхронных машин в энергетической системе необходимо учитывать их взаимное влияние друг на друга и ряд других факторов. По этим причинам строгая математическая теория переходных процессов синхронных машин весьма сложна.

Наиболее часто интенсивные переходные процессы в энергетических системах и синхронных машинах вызываются короткими замыканиями в электрических сетях и линиях электропередачи. Такие замыкания возникают по разным причинам (повреждение и пробой изоляции, атмосферные перенапряжения, замыкание проводов птицами, падение опор линий передачи, обрыв проводов и т. д.).

Короткие замыкания, которые возникают при нахождении сетей, линий передач и электрических машин под напряжением и развиваются весьма быстро, называются внезапными. Появляющиеся при этом переходные процессы во многих случаях весьма опасны. Кроме того, явления, возникающие при внезапных коротких замыканиях, во многих отношениях характерны и для других видов переходных процессов. Поэтому изучение процесса внезапного короткого замыкания занимает в теории переходных процессов синхронной машины одно из центральных мест.

Гашение магнитного поля и переходные процессы в цепях индуктора

Способы гашения поля. При внутренних коротких замыканиях в обмотке якоря синхронного генератора или на его выводах, до выключателя (рис. 34-1), автоматическая релейная защита с помощью выключателя отключает генератор от сети. Но короткое замыкание внутри генератора этим не устраняется, ток возбуждения if продолжает индуктировать э. д. с. в обмотке якоря, и в ней продолжают течь большие токи короткого замыкания, которые вызывают сначала расплавление меди обмотки якоря в месте короткого замыкания, а затем также расплавление стали сердечника якоря. Поэтому во избежание больших повреждений генератора необходимо быстро довести ток возбуждения и поток генератора до нуля. Такая операция называется гашением магнитного поля.

Гашение поля возможно путем разрыва цепи возбуждения генератора с помощью, например, контактов 8 (рис. 34-1, а). Однако это недопустимо, так как при этом, во-первых, вследствие чрезвычайно быстрого уменьшения магнитного потока в обмотках генератора индуктируются весьма большие э. д. с. способные вызвать пробой изоляции. В особенности это относится к самой обмотке возбуждения и к ее контактным кольцам, так как номинальное напряжение цепи возбуждения относительно мало (50—1000 В). Во-вторых, магнитное поле генератора содержит значительную энергию, которая при разрыве цепи возбуждения гасится в дуге выключателя между контактами 8, в результате чего этот выключатель может быстро прийти в негодность.

Разрыв цепи возбуждения возбудителя также недопустим в отношении возникающих при этом перенапряжений в обмотке возбуждения возбудителя. Кроме того, он не дает желательных результатов, так как обмотка возбуждения генератора 2 оказывается замкнутой через якорь возбудителя 6 и ввиду большой индуктивности и небольшого активного сопротивления этой цепи ток if будет затухать медленно, с постоянной времени 2—10 сек. При этих условиях размеры повреждения генератора при внутренних коротких замыканиях оказываются большими.

В связи с изложенным проблему гашения поля приходится решать компромиссным образом — путем уменьшения тока if с такой скоростью, чтобы возникающие перенапряжения были в допустимых пределах, а внутренние повреждения генератора были минимальны. Для этой цели разработаны соответствующие схемы и аппараты гашения поля.

Одна из широко применяемых схем гашения поля изображена на рис. 34-1, а. В этой схеме при нормальной работе контакты 8 замкнуты, а контакты 9 разомкнуты. При коротком замыкании внутри генератора релейная защита подает команду на замыкание контактов 9 и отключение контактов 8. Цепь обмотки 2 остается замкнутой через сопротивление 7 гашения поля rг, величина которого обычно в 3—5 раз больше сопротивления rf самой обмотки 2. При этом ток if затухает с определенной скоростью, которая тем меньше, чем больше rг. Контакты 8 и в данном случае работают в довольно тяжелых условиях, так как на них возникает сильная дуга.

В последние годы ОАО «Электросила» применяет также схему рис. 34-1, б, в которой сопротивление гашения поля отсутствует, а дуга в результате действия электродинамических сил выдувается с контактов 11 на решетку 12 и гасится в ней.

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ МАШИН

Включение синхронных генераторов на параллельную работу

На каждой электрической станции обычно бывает установлено несколько генераторов, которые включаются на параллельную работу в общую сеть. В современных энергосистемах на общую сеть, кроме того, работает целый ряд электростанций, и поэтому параллельно на общую сеть работает большое число синхронных генераторов. Благодаря этому достигается большая надежность энергоснабжения потребителей, снижение мощности аварийного и ремонтного резерва, возможность маневрирования энергоресурсами сезонного характера и другие выгоды.

Все параллельно работающие генераторы должны отдавать в сеть ток одинаковой частоты. Поэтому они должны вращаться строго в такт или, как говорят, синхронно, т. е. их скорости вращения п1, п2, п3 … должны быть в точности обратно пропорциональны числам пар полюсов:

В частности, скорости вращения генераторов с одинаковыми числами полюсов должны быть в точности одинаковыми.

Условия синхронизации генераторов.

При включении генераторов на параллельную работу с другими генераторами необходимо избегать чрезмерно большого толчка тока и возникновения ударных электромагнитных моментов и сил, способных вызвать повреждение генератора и другого оборудования, а также нарушить работу электрической сети или энергосистемы.

Поэтому необходимо отрегулировать надлежащим образом режим работы генератора на холостом ходу перед его включением на параллельную работу и в надлежащий момент времени включить генератор в сеть. Совокупность этих операций называется синхронизацией генератора.

Идеальные условия для включения генератора на параллельную работу достигаются при соблюдении следующих требований:

1) напряжение включаемого генератора UГ должно быть равно напряжению сети UС или уже работающего генератора;

2) частота генератора fГ должна равняться частоте сети fС;

3) чередование фаз генератора и сети должно быть одинаково;

4) напряжения UГ и UС должны быть в фазе.

При указанных условиях векторы напряжений генератора и сети совпадают и вращаются с одинаковой скоростью, разности напряжений между контактами выключателя при включении генератора (рис. 35-2) равны нулю, и поэтому при включении не возникает никакого толчка тока.

Равенство напряжений достигается путем регулирования тока возбуждения генератора и контролируется с помощью вольтметра. Изменение частоты и фазы напряжения генератора достигается изменением скорости вращения генератора. Правильность чередования фаз необходимо проверять только при первом включении генератора после монтажа или сборки схемы. Совпадение напряжений по фазе контролируется с помощью ламп, нулевых вольтметров или специальных синхроноскопов, а в автоматических синхронизаторах — с помощью специальных измерительных элементов.

Неправильная синхронизация может вызвать серьезную аварию. Действительно, если, например, напряжения UГ и UC будут в момент включения генератора на параллельную работу сдвинуты по фазе на 180°, то это эквивалентно короткому замыканию при удвоенном напряжении. Если генератор включается в сеть мощной энергетической системы, то сопротивление этой сети по сравнению с сопротивлением самого генератора можно принять равным нулю, и поэтому ударный ток при включении может превысить ток при обычном коротком замыкании в два раза. Ударные электромагнитные моменты и силы при этом возрастают в четыре раза.

Синхронизация с помощью лампового синхроноскопа может осуществляться по схеме на погасание или на вращение света.

Схема синхронизации на погасание света представлена на рис. 35-2, а, где слева изображен генератор Г1, уже работающий на шины станции и сеть, а справа — включаемый на параллельную работу генератор Г2 с вольтметром V, вольтметровым переключателем П и с ламповым синхроноскопом С, каждая из ламп 1, 2, 3 которого включена между контактами одной и той же фазы или полюса выключателя В2. При соблюдении приведенных выше условий напряжения на всех лампах одновременно равны нулю и лампы не светятся, что и указывает на возможность включения генератора Г2 с помощью выключателя В2 на параллельную работу.

Достичь точного равенства частот fГ = fС в течение даже небольшого промежутка времени практически невозможно (рис. 35-3, а), и поэтому напряжения UГUС на лампах 1, 2, 3 (рис. 35-2, а) пульсируют с частотой fГ fС (рис. 35-3), и если эта частота мала, то лампы загораются и погасают с такой же частотой. Частота fГ fС соответствует частоте пульсаций напряжения (штриховые кривые на рис. 35-3, б). Путем регулирования частоты генератора необходимо добиться того, чтобы частота загорания и погасания ламп была минимальна (период 3—5 сек), и произвести затем включение выключателя В2 в момент времени, когда лампы не горят.

При малой частоте лампы погасают раньше, чем напряжение достигнет нуля, и загораются также при U > 0. Поэтому при схеме рис. 35-2, а трудно выбрать правильный момент включения. В этом отношении лучшей является схема рис. 35-2, б, в которой лампа 1 включена так же, как на схеме рис. 35-2, а, а лампы 2 и 3 — между различными фазами генератора и сети. Поэтому в данном случае при соблюдении перечисленных выше условий лампа 1 не светится, а лампы 2 и 3 находятся под линейным напряжением и светятся с одинаковой яркостью, что и является критерием правильности момента включения.

При fГ – fС0 лампы 1, 2 и 3 (рис. 35-2, б) загораются и погасают поочередно, и создается впечатление вращающегося света, причем при fГ > fС вращение происходит в одну сторону, а при fГ < при fС — в другую. Частота вращения света равна при fГfС, и необходимо добиться, чтобы она была минимальна (период 3—5 сек).

Отметим, что если при осуществлении схемы рис. 35-2, а вместо одновременного погасания и загорания всех трех ламп получится вращение света, а при схеме рис. 35-2, б — одновременное погасание и загорание ламп, то это будет указывать на неправильность чередования фаз генератора и сети. При этом необходимо поменять местами начала двух фаз обмотки статора генератора.

Для более точного выбора момента включения параллельно одной из ламп рис. 35-2, а включают вольтметр, имеющий растянутую шкалу в области нуля (нулевой вольтметр).

Другие методы синхронизации. Синхронизация с помощью ламп и нулевого вольтметра применяется только для генераторов малой мощности. Для мощных генераторов пользуются электромагнитным синхроноскопом, к которому подаются напряжения генератора и сети. Этот прибор работает на принципе вращающегося магнитного поля, и при fГ ≠ fС его стрелка вращается с частотой fГ fС в ту или иную сторону в зависимости от того, какая частота больше. При правильном моменте включения стрелка синхроноскопа обращена вертикально вверх.

При высоком напряжении приборы синхронизации включаются через трансформаторы напряжения. При этом необходимо позаботиться о том, чтобы фазировка (чередование фаз) этих трансформаторов была правильной.

Синхронизация генераторов является весьма ответственной операцией и требует от эксплуатационного персонала большого внимания. В особенности это важно в случае различных аварий, когда персонал работает в напряженной обстановке. В то же время именно при авариях необходима максимальная оперативность в производстве различных переключений и в синхронизации резервных или отключившихся во время аварий генераторов. Опыт показывает, что наибольшее количество ошибочных действий персонала падает как раз на период аварий.

Для исключения ошибок персонала и облегчения его работы пользуются автоматическими синхронизаторами, которые осуществляют автоматическое регулирование UГ и fГ синхронизируемых генераторов в нужных направлениях и при достижении необходимых условий автоматически включают генераторы на параллельную работу. Однако подобные автоматические синхронизаторы также обладают недостатками (сложность, необходимость непрерывного и квалифицированного обслуживания и т. д.). К тому же во время аварий напряжение и частота в системе нередко беспрерывно и быстро меняются и поэтому процесс синхронизации с помощью автоматических синхронизаторов сильно затягивается (до 5—10 мин и даже более), что с точки зрения ликвидации аварии крайне нежелательно.

Вследствие сказанного в последние годы широко внедрен метод грубой синхронизации, или самосинхронизации.

Сущность метода само синхронизации заключается в том, что генератор включается в сеть в невозбужденном состоянии (UГ = 0) при скорости вращения, близкой к синхронной (допускается отклонение до 2%). При этом отпадает необходимость в точном выравнивании частот, величины и фазы напряжений, благодаря чему процесс синхронизации предельно упрощается и возможность ошибочных действий исключается. После включения невозбужденного генератора в сеть немедленно включается ток возбуждения и генератор втягивается в синхронизм (т. е. его скорость достигает синхронной и становится fГ = fС).

При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением UС эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с Е = UC.

Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.). Кроме того, включение генератора производится при включенном сопротивлении гашения поля, что также снижает величину ударного тока и способствует быстрому затуханию переходных токов.

По действующим правилам метод самосинхронизации можно применять в случаях, когда толчок тока не будет превышать 3,5 IH. В большинстве случаев это условие выполняется. На рис. 35-4 представлены кривые, относящиеся к включению в сеть методом самосинхронизации турбогенератора мощностью 100 МВт.

Синхронные режимы параллельной работы синхронных машин

Режим работы синхронной машины параллельно с сетью при синхронной скорости вращения называется синхронным.

Изменение реактивной мощности. Режим синхронного компенсатора. Предположим, что при включении на параллельную работу изложенные условия синхронизации возбужденного генератора были соблюдены в точности, т. е. машина не примет на себя никакой нагрузки.

Таким образом, изменение тока возбуждения синхронной машины вызовет в ней только реактивные токи или изменение реактивного тока и реактивной мощности. При Е > U синхронная машина называется перевозбужденной, а при Е < U недовозбужденной. При равенстве активной мощности нулю перевозбужденная синхронная машина по отношению к сети эквивалентна емкости, а недовозбужденная — индуктивности.

Синхронная машина, не несущая активной нагрузки и загруженная реактивным током, называется синхронным компенсатором. Такие компенсаторы применяются для повышения коэффициента мощности и поддержания нормального уровня напряжения в сетях.

Если, например, такой компенсатор установить в районе большой промышленной нагрузки и перевозбудить его, то он будет снабжать асинхронные двигатели промышленных предприятий реактивной мощностью, питающая сеть и генераторы электрических станций будут полностью или частично разгружены от этой мощности, коэффициент мощности генераторов и сети повысится, потери мощности и падения напряжения в них уменьшатся и напряжение сети у потребителей сохранится на нормальном уровне.

Изменение активной мощности. Режимы генератора и двигателя.

Из сказанного выше следует, что изменение тока возбуждения не вызывает появления активной нагрузки или её изменения. Чтобы включенная на параллельную работу машина приняла на себя активную нагрузку и работала в режиме генератора, необходимо увеличить движущий механический вращающий момент на ее валу, увеличив, например, поступление воды или пара в турбину.

Параллельная работа синхронных генераторов на сеть ограниченной мощности.

В ряде случаев мощность отдельного генератора составляет значительную часть мощности всех генераторов системы. В других случаях станция с несколькими генераторами соединена с мощной системой через длинную линию передачи. Хотя в этих условиях установленные выше общие положения также сохраняются в силе, однако при этой изменение режима работы одного генератора оказывает все же заметное влияние на режим работы других генераторов.

Для выяснения особенностей параллельной работы в этих условиях допустим, что параллельно на общую сеть работают два генератора одинаковой мощности, снабжая электроэнергией группу потребителей (см. рис. 35-2). Если, например, увеличить одновременно токи возбуждения if1, if2 этих генераторов, то напряжение U обоих генераторов и всей сети возрастет. При увеличении U в общем случае возрастет также реактивная мощность потребителей, например асинхронных двигателей. При if1 = if2 эта мощность распределится поровну между обоими генераторами.

Если увеличить только if1 то U также возрастет, но в меньшей степени. В то же время реактивная мощность генератора Г1 увеличится, а генератора Г2 — уменьшится. При увеличении if1 для сохранения U = const ток if2 другого генератора нужно уменьшить. При этом реактивная мощность генератора Г1 возрастет, а генератора Г2 — уменьшится.

Таким образом, в системе ограниченной мощности для повышения напряжения сети необходимо увеличивать токи возбуждения всех генераторов, а для перераспределения общей реактивной мощности между отдельными генераторами при U = const нужно токи возбуждения одних генераторов увеличивать, а других — уменьшать.

Если увеличить вращающие моменты или мощности первичных двигателей всех генераторов в системе ограниченной мощности, то скорость вращения этих двигателей и частота сети будут возрастать. При этом повысится также мощность потребителей, например, в результате повышения скорости вращения асинхронных двигателей. Повышение частоты будет происходить до тех пор, пока не наступит баланс мощностей между первичными двигателями и потребителями с учетом потерь в генераторах и сети. Для сохранения f = const при увеличении мощности первичного двигателя одного генератора мощность первичного двигателя второго нужно уменьшить. При этом происходит перераспределение активных мощностей.

При недостатке генерируемой активной мощности в системе частота f будет падать, что нарушит нормальное энергоснабжение потребителей. При недостатке генерируемой реактивной мощности в системе (невозможность поддерживать на необходимом уровне реактивную мощность генераторов электростанций и синхронных компенсаторов во избежание перегрузки их током) напряжение системы будет падать, при определенных условиях даже катастрофически (так называемая лавина напряжения). Поэтому сохранение баланса реактивных мощностей в системе не менее важно, чем сохранение баланса активных мощностей.

СИНХРОННЫЕ ДВИГАТЕЛИ И КОМПЕНСАТОРЫ

Синхронные двигатели. Применение синхронных двигателей.

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cos φ = 1 и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U2.

Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором. Пуск и регулирование скорости вращения синхронных двигателей также сложнее.

Тем не менее, преимущество синхронных двигателей настолько велико, что при РН > 200 ÷ 300 кВт их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.). Синхронные двигатели с cos φН = 1 по своей стоимости и потерям энергии всегда имеют преимущество перед асинхронными двигателями, снабженными конденсаторными батареями для компенсации коэффициента мощности до cos φ = 1. При РН > 300 кВт выгодно использовать синхронные двигатели с cos φН = 0,9 (перевозбуждение) и при РН > 1000 кВm — с cos φН = 0,8.

Применение синхронных двигателей беспрерывно расширяется, и они строятся на мощности до РН = 50 000 кВт.

Способы пуска синхронных двигателей

Синхронный двигатель не имеет начального пускового момента. Если его подключить к сети переменного тока когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять своё направление, т.е. средний момент за период будет равен нулю. При этих условиях двигатель не сможет прийти во вращение, так как ротор его, обладающий определённой инерцией, не может быть в течение одного полупериода разогнан до синхронной частоты вращения. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. В подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей. При этом методе двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой обмоткой, выполненной по типу беличьей клетки. Обычно эту клетку выполняют из латуни с целью увеличения сопротивления стержней. При включении трёхфазной обмотки якоря в сеть образуется вращающееся магнитное поле, которое, взаимодействуя с током IП в пусковой обмотке, создаёт электромагнитные силы F и увлекает за собой ротор. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создаёт синхронизирующий момент, который втягивает ротор в синхронизм.

Обычно синхронные двигатели имеют на своем валу возбудитель в виде генератора постоянного тока параллельного возбуждения (рис. 37-1). При пуске по схеме рис. 37-1, а контакты 7 разомкнуты, а контакт 8 замкнут. При этом обмотка возбуждения двигателя 2 замкнута через сопротивление 6 и асинхронный пуск происходит в наиболее благоприятных условиях. В конце асинхронного пуска, при s ≈ 0,05, срабатывает частотное реле, обмотка которого (на рис. 37-1, а не показана) подключена к сопротивлению 6, и включает контактор цепи возбуждения. Контакты 7 контактора при этом замыкаются, а контакт 8 размыкается. В результате в обмотку 2 подается ток возбуждения и двигатель втягивается в синхронизм. Пуск по схеме рис, 37-1, а отличается определенной сложностью. Поэтому в последнее время все чаще применяется схема рис. 37-1, б с наглухо присоединенным возбудителем. При этом по цепи якоря 3 при пуске протекает переменный ток, который, однако, не причиняет вреда. При п = (0,6 ÷ 0,7) пН возбудитель возбуждается и возбуждает синхронный двигатель, благодаря чему при приближении к синхронной скорости двигатель втягивается в синхронизм.

Пуск по схеме рис. 37-1, б происходит в менее благоприятных условиях. Во-первых, двигатель возбуждается слишком рано и при этом возникает дополнительный тормозящий момент на валу МК. Во-вторых, в данном случае по сравнению со схемой рис. 37-1, а кривая асинхронного момента имеет менее благоприятный вид. Тем не менее, схема рис. 37-1, б обеспечивает надежное втягивание двигателя в синхронизм, если момент нагрузки на валу МСТ при п ≈ пН не превышает (0,4 ÷ 0,5) МН. Путем совершенствования пусковой обмотки двигателя можно достичь надежного втягивания в синхронизм при МСТ = МН. Пуск по схеме рис, 37-1, б по своей простоте приближается к пуску короткозамкнутого асинхронного двигателя и поэтому находит в последние годы все более широкое применение.

Обычно производится прямой асинхронный пуск синхронных двигателей путем включения на полное напряжение сети. При тяжелых условиях пуска (большие падения напряжения в сети и опасность перегрева пусковой обмотки или массивного ротора) производится реакторный или автотрансформаторный пуск при пониженном напряжении, как и у короткозамкнутых асинхронных двигателей.

Рабочие характеристики синхронного двигателя мощностью РН = 560 кВт при U = UH, f = fH и if = ifH = const изображены в относительных единицах на рис. 37-4. Двигатель работает с перевозбуждением, его cos φ с уменьшением полезной мощности Р2 также уменьшается, а отдаваемая в сеть реактивная мощность Q увеличивается. Отсюда следует, что перевозбужденные недогруженные синхронные двигатели в отличие от асинхронных способствуют улучшению коэффициента мощности сети.

Синхронные компенсаторы

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным является перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу. Поэтому синхронные компенсаторы загружены также небольшим активным током и потребляют из сети активную мощность для покрытия своих потерь. Компенсаторы строятся на мощность до SH = 100 000 кВ*А и имеют явнополюсную конструкцию, обычно с 2р = 6 или 8. Мощные компенсаторы имеют водородное охлаждение.

Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска. В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метол самосинхронизации.

Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели. Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.

Номинальная полная мощность синхронного компенсатора

соответствует его работе с перевозбуждением. Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме с if = 0 и E = 0.

В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Псковский государственный политехнический институт

Электромеханический факультет

Кафедра

«Электропривод и системы автоматизации»

А.М. Марков

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

(Часть II)

Учебное пособие для студентов высшего профессионального образования

специальности 140604 очно-заочной (вечерней) формы обучения

Псков

2006

УДК 621.313 (075.8) «Электрические машины» (Часть II)

Рекомендовано к изданию Учебно-методическим советом

Псковского государственного политехнического института

Рецензенты:

– Сычёв В.А., к.т.н., доцент, генеральный директор

ООО Субконтрактинговый Центр «Северо-Запад».

– Родионов Ю.А., к.т.н., доцент, директор ООО «Экотех».

– Григорьев О.И., к.т.н., доцент кафедры «Электроэнергетика», ППИ.

Марков А.М. «Электрические машины» (Часть II). Учебное пособие. Для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов. – Псков, 2006. – 56 с.

В учебном пособии «Электрические машины» (Часть II) рассмотрены основы теории электрических машин переменного тока. Приведены основные конструкции и характеристики асинхронных и синхронных машин различного исполнения, режимы их работы, условия выбора и эксплуатации.

Учебное пособие предназначено для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов, а также для студентов других специальностей и специалистов, интересующихся вопросами расчёта и эксплуатации электрических машин.

© Псковский государственный политехнический институт, 2006.

© Марков А.М., 2006.

ОСНОВНЫЕ ВИДЫ МАШИН ПЕРЕМЕННОГО ТОКА И ИХ УСТРОЙСТВО

Основные виды машин переменного тока

На практике применяются преимущественно трехфазные (т = 3) машины переменного тока. Машины с другим числом фаз (т = 2, 6) используются для специальных целей.

Однако действие всех многофазных машин основано на принципе вращающегося магнитного поля, и поэтому их теорий является общей. Однофазные машины переменного тока имеют ограниченное применение.

Ниже, прежде всего, рассматриваются трехфазные машины переменного тока. Они подразделяются на три основных вида: синхронные, асинхронные и коллекторные.

Все виды машин переменного тока рассчитываются на работу при синусоидальном переменном токе.

В синхронных машинах нормальных типов ротор вращается с такой же скоростью и в том же направлении, как и вращающееся магнитное поле. Таким образом, вращение ротора происходит в такт, или синхронно, с вращающимся полем, откуда и происходит название этого вида машин.

Синхронные машины используются, прежде всего, в качестве генераторов, и за незначительным исключением на электрических станциях переменного тока устанавливаются синхронные генераторы. Однако все более расширяется также применение синхронных машин в качестве двигателей.

Ротор асинхронных машин вращается несинхронно, или асинхронно, по отношению к вращающемуся магнитному полю, чем и обусловлено название этих машин.

На практике асинхронные машины используются главным образом в качестве двигателей, и подавляющее число применяемых в промышленности электрических двигателей являются асинхронными.

Коллекторные машины переменного тока также вращаются несинхронно с магнитным полем, и в этом смысле они являются асинхронными машинами. Однако ввиду наличия у них коллектора и связанных с этим особенностей они выделяются в отдельный вид машин переменного тока. Наибольшее применение коллекторные машины находят в качестве двигателей. Однако их использование ограничено, и поэтому главнейшими видами машин переменного тока являются асинхронные и синхронные машины.

Устройство и принцип действия асинхронной машины

Устройство асинхронной машины. Неподвижная часть машины переменного тока называется статором, а подвижная часть — ротором. Сердечники статора и ротора асинхронных машин собираются из листов электротехнической стали (рис. 19-1), которые до сборки обычно покрываются с обеих сторон масляно-канифольным изоляционным лаком. Сердечники машин малой мощности иногда собираются из листов без лакового покрытия, так как в этом случае достаточной изоляцией является естественный или искусственно созданный слой окислов на поверхности листов стали.

На рис. 19-2 представлена фотография асинхронного двигателя малой мощности в разобранном виде, на которой видны статор, ротор и подшипниковые щиты. На рис. 19-3 дан чертеж асинхронного двигателя средней мощности.

Сердечник статора закрепляется в корпусе, а сердечник ротора — на валу (машины малой и средней мощности) или на ободе с крестовиной и втулкой, надетой на зал (машины большой мощности). Вал ротора вращается в подшипниках, которые помещаются в подшипниковых щитах, прикрепляемых к корпусу статора (машины малой и средней мощности), или на отдельно стоящих подшипниковых стояках.

На внутренней цилиндрической поверхности статора и на внешней цилиндрической же поверхности ротора имеются пазы, в которых размещаются проводники обмоток статора и ротора.

Обмотка статора выполняется обычно трехфазной, присоединяется к сети трехфазного тока и называется поэтому также первичной обмоткой. Обмотка ротора тоже может быть выполнена трехфазной аналогично обмотке статора. Концы фаз такой обмотки ротора соединяются обычно в звезду, а начала с помощью контактных колец и металлографитных щеток выводятся наружу (рис. 19-3). Такая асинхронная машина называется машиной с фазным ротором. К контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Фазная обмотка ротора выполняется с тем же числом полюсов магнитного поля, как и статор.

Другая разновидность обмотки ротора — обмотка в виде беличьей клетки (рис. 19-4). При этом в каждом пазу находится медный или алюминиевый стержень и концы всех стержней с обоих торцов ротора соединены с медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Стержни от сердечника обычно не изолируются.

В машинах мощностью до 100 кВт стержни и кольца вместе с крылышками для вентиляции обычно изготовляются путем заливки ротора алюминием (см. рис. 19-2). Такая асинхронная машина называется машиной е короткозамкнутым ротором. Большинство асинхронных машин, в особенности машины малой и средней мощности, выпускается с короткозамкнутым ротором.

Воздушный зазор между статором и ротором в асинхронных машинах выполняется минимально возможным по условиям производства и надежности работы и тем больше, чем крупнее машины. В машинах мощностью в несколько киловатт величина зазора составляет 0,4—0,5 мм, а в машинах большой мощности — несколько миллиметров.

Асинхронные машины, как правило, охлаждаются воздухом. Системы вентиляции в принципе являются такими же, как и у машин постоянного тока.

Принцип действия асинхронной машины. Магнитный поток Ф1 создаваемый обмоткой статора, при своем вращении пересекает проводники обмотки ротора, индуктирует в них э. д. с. e12, и если обмотка ротора замкнута, то в ней возникают токи i2, частота которых f2 при неподвижном роторе (п = 0) равна первичной частоте f1.

Если обмотка ротора является трехфазной, то в ней индуктируется трехфазных ток. Этот ток создает вращающийся поток ротора Ф2, число полюсов 2 р, направление и скорость вращения которого при п = 0

такие же, как и у потока статора. Поэтому потоки Ф1 и Ф2 вращаются синхронно и образуют общий вращающийся поток двигателя Ф. При короткозамкнутом роторе в его стержнях индуктируется многофазная система токов.

В результате взаимодействия токов ротора с потоком возникают действующие на проводники ротора механические силы F и вращающий электромагнитный момент М.

Вращающий момент создается только активной составляющей тока ротора

Этот вывод имеет общий характер и справедлив также для других видов машин переменного тока.

Цепь ротора асинхронного двигателя всегда обладает определенным активным сопротивлением, и поэтому при пуске двигателя (п = 0) всегда 0 < ψ2 < 90°, В результате развиваемый момент М > 0, и если он больше статического тормозного момента на валу, то ротор двигателя придет во вращение в направлении вращения поля с некоторой скоростью п < п1 т. е. будет вращаться с некоторым отставанием, или скольжением, относительно поля статора.

Относительная разность скоростей вращения поля и ротора

называется скольжением. Скольжение выражается также в процентах:

Скорость ротора n, выраженная через скольжение s, согласно формуле (19-6), равна

При пуске двигателя (п = 0) имеем s = 1, а при вращении ротора синхронного с полем статора или, как говорят, с синхронной скоростью (п = n1) будет s = 0. При п = n1 магнитное поле статора относительно ротора неподвижно и токи в роторе индуктироваться не будут, поэтому М = 0 и такой скорости вращения двигатель достичь не может. Вследствие этого в режиме двигателя всегда 0 < n < n1 и 1 > s > 0.

При вращении ротора в сторону поля частота пересечения полем проводников ротора пропорциональна разности скоростей n1п и частота тока в обмотке ротора

Подставив сюда значение п из формулы (19-7) и затем значение п1 из (19-2), получим

т. е. вторичная частота пропорциональна скольжению.

При частоте тока f2 < f1 скорость вращения поля ротора относительно самого ротора n2p также меньше п1 и на основании выражения (19-9)

Скорость вращения поля ротора относительно статора в соответствии с выражениями (19-7) и (19-10)

т. е. скорость вращения поля ротора относительно статора при любой скорости вращения ротора п равна скорости вращения поля статора п1. Поэтому поля статора и ротора при вращающемся роторе также вращаются всегда синхронно и образуют общее вращающееся поле.

Если ротор асинхронной машины с помощью внешней силы (вращающего момента) привести во вращение в направлении вращения поля статора со скоростью выше синхронной (п > п1), то ротор будет обгонять поле и направления индуктируемых в обмотке ротора токов изменяется на обратные. При этом изменяется на обратные также направления электромагнитных сил F и электромагнитного момента М. Момент М при этом будет тормозящим, а машина будет работать в режиме генератора и отдавать активную мощность в сеть. Согласно выражению (19-6), в режиме генератора s < 0.

Если ротор вращать в направлении, обратном направлению вращения поля статора (п < 0), то указанные направления е2, i2 и F сохраняется. Электромагнитный момент М будет действовать в направлении вращения поля статора, но будет тормозить вращение ротора. Этот режим работы асинхронной машины называется режимом противовключения или режимом электромагнитного тормоза. В этом режиме в соответствии с выражением (19-6) s > 1.

Устройство и принцип действия синхронной машины

Устройство и принцип действия. Статор синхронной машины (рис. 19-8) имеет такое же устройство, как и статор асинхронной машины. Трехфазная или в общем случае m-фазная обмотка статора синхронной машины выполняется с таким же числом полюсов, как и ротор, и называется также обмоткой якоря. Сердечник статора вместе с обмоткой называется также якорем. На рис. 19-8 условно показаны только выводные концы А, В, С обмотки статора.

Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника. В качестве источника чаще всего служит генератор постоянного тока относительно небольшой мощности (0,3—3,0% от мощности синхронной машины), который называется возбудителем и устанавливается обычно на одном валу с синхронной машиной.

Назначение обмотки возбуждения — создание в машине первичного магнитного поля. Ротор вместе со своей обмоткой возбуждения называется также индуктором. При изготовлении синхронных машин принимаются меры к тому, чтобы распределение индукций поля возбуждения вдоль окружности статора было по возможности близко к синусоидальному.

Если ротор синхронной машины (рис. 19-8) привести во вращение с некоторой скоростью п об/сек и возбудить его, то поток возбуждения Фf будет пересекать проводники обмотки статора и в фазах последней будут индуктироваться э. д. с. с частотой

Э. д. с. статора составляют симметричную трехфазную систему э. д. с. и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузится симметричной системой токов. Машина при этом будет работать в режиме генератора.

При нагрузке обмотка статора создает такое же по своему характеру вращающееся магнитное поле, как и обмотка статора асинхронной машины. Это поле статора вращается в направлении вращения ротора со скоростью

Если подставить сюда f1 из формулы (19-12), то получим

Поля статора и ротора вращаются с одинаковой скоростью и образуют, таким образом, общее вращающееся поле, как и в асинхронной машине.

Поле статора (якоря) оказывает воздействие на поле ротора (индуктора) и называется в связи с этим также полем реакции якоря.

Синхронная машина может работать и в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

Из формулы (19-12) следует, что чем больше число пар полюсов синхронной машины p, тем меньше должна быть ее скорость вращения п для получения заданной частоты f1.

По своей конструкции синхронные машины подразделяются на явнополюсные и неявнополюсные.

Явнополюсные синхронные машины (рис. 19-8, а) имеют выступающие полюсы и изготовляются с числом полюсов 2р ≥ 4.

Сердечники полюсов явнополюсных машин набираются из листов стали толщиной 1—2 мм и стягиваются с помощью шпилек. В средних и крупных машинах полюсы крепятся к выступам вала, к втулке вала или к ободу крестовины с помощью Т-образных хвостов. В малых машинах полюсы крепятся также с помощью болтов. Обмотка возбуждения крупных машин наматывается из голой полосовой меди на ребро, и проводники обмотки изолируются друг от друга изоляционными прокладками.

В полюсных наконечниках синхронных двигателей, в соответствующих пазах, помещаются стержни пусковой обмотки из материала с повышенным удельным сопротивлением (латунь и др.), которые привариваются по торцам к короткозамыкающим сегментам, а последние соединяются в общие короткозамыкающие кольца. Такая обмотка напоминает беличью клетку короткозамкнутого асинхронного двигателя и служит для асинхронного пуска синхронного двигателя. Такие же по конструкции обмотки, но из медных стержней изготовляются нередко в синхронных генераторах и называются в этом случае успокоительными или демпферными обмотками. В последнее время полюсы синхронных двигателей часто делают также массивными из стальных поковок, и в этом случае роль пусковой обмотки выполняют сами массивные полюсы. Торцы наконечников соседних полюсов при этом соединяются проводниками в виде планок.

Явнополюсные синхронные машины мощностью до 10-12 кВт имеют иногда также так называемую обращенную конструкцию, когда индуктор (полюсы) является неподвижным, а якорь вращается. Такие машины напоминают по устройству машины постоянного тока, у которых коллектор заменен тремя контактными кольцами для отвода тока из обмотки якоря. Для крупных машин обращенная конструкция невыгодна, так как отвод из обмотки якоря больших токов при высоком напряжении с помощью колец и щеток чрезвычайно затруднителен, и сложно осуществить надежную изоляцию вращающейся якорной обмотки высокого напряжения.

Явнополюсные синхронные машины с горизонтальным валом широко используются в качестве двигателей и генераторов, в частности в качестве так называемых дизель-генераторов, соединяемых с дизельными двигателями внутреннего сгорания. Во избежание затруднений, которые могут возникнуть при работе дизель-генератора вследствие неравномерности вращающего момента дизеля как поршневой машины, дизель-генератор снабжается маховиком или его ротор выполняется с повышенным маховым моментом (моментом инерции). Аналогичную конструкцию имеют также синхронные двигатели, предназначенные для привода поршневых компрессоров.

Синхронные генераторы, сочленяемые с гидравлическими турбинами, работающими на гидроэлектростанциях, называются гидрогенераторами. Они имеют явнополюсную конструкцию и при мощностях до нескольких тысяч киловатт чаше всего также выполняются с горизонтальным валом. В последние годы все большее применение начинают находить так называемые капсульные гидрогенераторы (рис. 19-11), также имеющие горизонтальный вал.

Такие генераторы заключаются в водонепроницаемую оболочку, или капсулу, которая с внешней стороны обтекается потоком воды, проходящим через турбину. Такая конструкция применяется для низконапорных гидростанций и позволяет отказаться от машинного зала и достичь большей компактности станции, что приводит к ее удешевлению. Капсульные гидрогенераторы изготовляются на мощности до нескольких десятков тысяч киловатт.

Вертикальные гидрогенераторы представляют собой особый класс явнополюсных синхронных машин, которые имеют вертикальный вал и соединяются непосредственно с гидравлическими турбинами.

Гидравлические турбины в зависимости от напора воды и мощностей имеют обычно относительно малую скорость вращения (n = 60 ÷ 500 об/мин). Скорость вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и вес, а также большое количество полюсов. Изготовлены уникальные и самые крупные в мире гидрогенераторы мощностью до 500 000 кВт.

Весьма ответственной частью вертикального гидрогенератора является упорный подшипник, или подпятник, который воспринимает веса вращающихся частей генератора и турбины, а также давление воды на лопасти турбины. Поэтому на подпятник действуют огромные усилия. Особенно трудны условия работы подпятника при пуске и тем более при остановке агрегата, так как при малой скорости вращения масляный клин (пленка) между скользящими поверхностями подпятника не образуется и генератор с турбиной не «всплывают». Вследствие большой инерции гидроагрегата время его выбега (остановки) при закрытии воды и отключении от сети велико. Для уменьшения продолжительности вращения агрегата с низкой скоростью при его остановке применяются тормоза. Кроме подпятников, гидрогенераторы имеют также направляющие подшипники, которые воспринимают радиальные усилия.

На одном валу с гидрогенератором, в верхней его части, в большинстве случаев устанавливаются также вспомогательные машины; возбудитель генератора и регуляторный генератор, который представляет собой небольшой синхронный генератор с полюсами в виде постоянных магнитов и предназначен для питания двигателей масляного автоматического регулятора турбины.

В крупных машинах возбудитель нередко заменяют вспомогательным синхронным генератором, который служит как для возбуждения (вместе с ртутными выпрямителями или возбудительными агрегатами, состоящими из двигателя переменного тока и генератора постоянного тока), так и для питания различных двигателей, обслуживающих гидроагрегат, состоящий из турбины и гидрогенератора.

По своей конструкции вертикальные гидрогенераторы подразделяются на подвесные и зонтичные.

При аварийном отключении гидрогенератора от сети его скорость сильно возрастает, так как быстрое прекращение доступа большой массы воды в турбину невозможно, а подача энергии в сеть прекращается Достигаемая при этом максимальная, так называемая угонная, скорость может в два и более раз превысить номинальную. Поэтому механическая прочность машины рассчитывается на эту скорость.

С вертикальным валом изготовляются также мощные синхронные двигатели для привода больших гидравлических насосов.

Неявнополюсные синхронные машины имеют цилиндрический ротор, выполняемый обычно из массивной стальной поковки. В роторе фрезеруются пазы для укладки обмотки возбуждения. Эти машины выпускаются с числом полюсов = 2 и = 4 и имеют, поэтому, большие скорости вращения (при f = 50 Гц соответственно 3000 и 1500 об/мин). Изготовление крупных машин с такими скоростями вращения при явнополюсной конструкции по условиям механической прочности ротора и крепления его полюсов и обмотки возбуждения невозможно.

Основными представителями неявнополюсных машин являются турбогенераторы, т.е, синхронные генераторы, предназначенные для непосредственного соединения с работающими на тепловых электростанциях паровыми турбинами. В настоящее время большинство турбогенераторов выполняется двухполюсными, так как паровые турбины являются в принципе быстроходными машинами, а при больших скоростях вращения их технико-экономические показатели выше. Однако для атомных электростанций с водо-водяными реакторами выпускаются также четырёхполюсные турбогенераторы.

Роторы турбогенераторов большой мощности изготовляются из цельных поковок высококачественной хромоникелевой или хромоникельмолибденовой стали. Однако и при этом предельный диаметр активной части ротора при пН = 3000 об/мин по условиям механической прочности из-за больших центробежных сил не превышает 1,20 – 1,30 м. В связи с этим роторы мощных машин приходится делать длинными. В то же время увеличение длины ротора ограничено пределом увеличения гибкости и прогиба ротора и пределом связанного с этим увеличения его вибрации. Наибольшая возможная активная длина ротора составляет l ≈ 7,5—8,5 м.

Таким образом, предельные размеры турбогенераторов ограничены возможностями современной металлургии. Поэтому увеличение предельных мощностей турбогенераторов связано с увеличением электромагнитных нагрузок (линейные нагрузки и плотности тока обмоток) а интенсификацией способов охлаждения.

Обмотка ротора турбогенератора выполняется в виде концентрических катушек и закрепляется в пазах немагнитными металлическими клиньями (дюралюминий и т. д.), которые обладают требуемой механической прочностью и воспринимают весьма большие центробежные силы обмотки возбуждения. Немагнитные клинья предотвращают возникновение больших магнитных потоков рассеяния, замыкающихся вокруг лазов через клинья и вызывающих излишнее насыщение зубцов и уменьшение полезного потока, проходящего через воздушный зазор в статор. Примерно одна треть каждого полюсного деления ротора свободна от пазов и составляет так называемый большой зуб.

Обмотки ротора имеют миканитовую или другую изоляцию класса В или F. Лобовые части обмотки ротора закрываются прочным кольцеобразным стальным бандажом, рассчитанным на действие центробежных сил лобовых частей обмотки и самого бандажа.

Весьма серьезной является проблема охлаждения турбогенератора.

Турбогенераторы мощностью до 30 тыс. кВт выполняются с замкнутой системой воздушного охлаждения, а при PН ≥ 30 тыс. кВт воздушная охлаждающая среда заменяется водородом с избыточным давлением около 0,05 атм. во избежание засасывания воздуха через уплотнения и образования гремучей смеси. Применение водорода позволяет усилить съем тепла, повысить мощность при заданных размерах машины и уменьшить вентиляционные потери.

Создание турбогенераторов с РН > 150 000 кВт требует дальнейшей интенсификации методов охлаждения. При этом идут по пути увеличений давления водорода в корпусе до 3—5 атм. При дальнейшем увеличении мощности Н ≥ 300 тыс. кВт) необходимо перейти к наиболее эффективному способу съема тепла — к внутреннему охлаждению проводников обмоток водородом или водой. Для этой цели применяются полые проводники.

При РН ≥ 500 000 кВт иногда переходят к охлаждению полых проводников ротора водой. Обмотки статоров турбогенераторов выполняются с внутренним охлаждением проводников водой при РН ≥ 300 000 кВт.

Выше указаны номинальные мощности турбогенераторов, при которых необходимо переходить к более интенсивным способам охлаждения, так как в противном случае достижение этих мощностей при наибольших допустимых размерах машины невозможно. Однако переход к более интенсивным способам охлаждения целесообразен и при меньших мощностях, так как это позволяет уменьшить размеры машины, ее вес и стоимость. Этот путь в последнее время и используется на практике. Отметим, что непосредственное охлаждение обмоток водой начинают применять также в мощных гидрогенераторах.

Предельная мощность турбогенератора при внутреннем водяном охлаждении ротора составляет 2000—2500 МВт. При переходе к еще большим мощностям необходимо использовать криогенные турбогенераторы, в которых применяются сверхпроводниковые обмотки возбуждения и чья конструкция весьма существенно отличается от конструкции обычных турбогенераторов.

С неявнополюсными роторами изготовляются также мощные синхронные двигатели при 2р = 2. По аналогии с турбогенераторами такие двигатели называют иногда также турбодвигателями или турбомоторами.

Особенности устройства многофазных коллекторных машин переменного тока

В разное время был разработан целый ряд различных разновидностей трехфазных коллекторных машин переменного тока. Однако в основе действия каждой из них лежит действие коллектора как преобразователя частоты, благодаря чему частота тока во внешней цепи ротора, за коллектором, не зависит от скорости вращения ротора и всегда равна частоте тока статора. Это обстоятельство в свою очередь позволяет осуществлять электрическую связь цепей статора и ротора и путем видоизменения этой связи придавать машине особые свойства в отношении регулирования скорости вращения и т. д.

Типичная конструкция трехфазной коллекторной машины включает в себя: 1) статор с трехфазной обмоткой, аналогичный статору асинхронной или синхронной машины; 2) ротор, аналогичный якорю машины постоянного тока, и с такой же обмоткой, соединенной с коллектором. На коллекторе на каждом двойном полюсном делении вместо двух щеточных пальцев, как у машины постоянного тока, устанавливаются три щеточных пальца, причем щетки щеточных пальцев каждой фазы соединяются с помощью перемычек параллельно, как и в машине постоянного тока. Кроме того, на статоре и роторе могут быть и некоторые дополнительные обмотки.

Соединенная с коллектором замкнутая якорная обмотка при установке на коллекторе, как указано выше, трехфазного комплекта щеток, сдвинутых относительно друг друга на 120° эл. (рис. 19-21), представляет собой трехфазную обмотку, соединенную в треугольник. Токи через щетки А, В, С равны разностям токов фаз ia, ib, ic.

При вращении якоря положение каждой фазы обмотки неизменно и секции обмотки переходят поочередно из одних фаз в другие. При установке шестифазного комплекта щеток, сдвинутых относительно друг друга на 60° эл., получается шестифазная обмотка, соединенная в многоугольник.

Поясним работу коллектора как преобразователя частоты.

На рис. 19-22 схематически изображена машина постоянного тока. Когда ее щетки и полюсы неподвижны (nЩ = пФ = 0), а якорь вращается со скоростью n, то в обмотке якоря индуктируются э. д. с, (ток) частоты

в то время как во внешней цепи якоря и щеток частота fЩ = 0. Таким образом, в данном случае коллектор превращает ток с частотой fЯ внутри якоря в ток с частотой fЩ = 0 во внешней цепи или наоборот.

Если теперь с помощью подходящего механизма привести щетки во вращение со скоростью nЩ, то полярность щеток будет меняться с частотой

и во внешней цепи получим ток частоты fЩ. Таким образом, теперь коллектор преобразовывает ток с частотой fЯ внутри якоря в ток с частотой fЩ ≠ 0 во внешней цепи или наоборот.

Очевидно, что частота fЩ во внешней цепи не изменится, если вместо щеток вращать полюсы со скоростью nФ = nЩ. При этом изменятся лишь частота в самой обмотке якоря

и величина индуктируемой в ней э. д. с. Такое преобразование частот будет происходить и тогда, когда вместо машины постоянного тока с вращающимися полюсами будем иметь статор многофазной машины переменного тока, который питается током с частотой f1 и создает магнитное поле со скоростью вращения

Подставив nФ = nЩ из (19-16) в (19-14), получим fЩ = f1, т.е. частоты тока статора и тока внешней цепи ротора равны.

Таким образом, частота на щетках многофазной коллекторной машины определяется скоростью вращения магнитного потока относительно неподвижных щеток.

Отметим, что знак плюс в выражении (19-15) относится к случаю встречных направлений вращения ротора и поля, а знак минус — к случаю согласных направлений их вращения.

ОБМОТКИ ПЕРЕМЕННОГО ТОКА

Общие замечания. При конструировании машин переменного тока стремятся к тому, чтобы индуктируемые в обмотках э. д. с. были синусоидальными. Если э. д. с. индуктируются вращающимся магнитным полем, то для этого необходимо, чтобы распределение магнитной индукции вдоль воздушного зазора было также синусоидальным.

Получение вполне синусоидального распределения магнитного поля практически невозможно, однако для приближения к этой цели применяются различные меры конструктивного характера. Например, для улучшения кривой поля возбуждения явнополюсных синхронных генераторов их полюсные наконечники обычно выполняют с радиусом, несколько меньшим, чем радиус воздушного зазора, в результате чего величина зазора у края наконечника больше, чем по его середине. Тем не менее и в этом случае кривая поля наряду с основной гармоникой (ν = 1) содержит другие нечетные гармоники (ν = 3, 5, 7…), амплитуды которых уменьшаются с увеличением их порядка ν.

Общие сведения о трехфазных обмотках. Обмотки переменного тока подразделяются на однослойные и двухслойные. B современных машинах переменного тока применяются, преимущественно, двухслойные обмотки.

В двухслойных обмотках, как и в якорных обмотках машин постоянного тока, стороны катушек лежат в пазах в два слоя и каждая катушка одной стороной лежит в верхнем, а другой стороной — в нижнем слое. При этом все катушки имеют одинаковые размеры и форму.

Широкое применение двухслойных обмоток объясняется следующими их преимуществами: 1) возможностью укорочения шага на любое число зубцовых делений, что выгодно с точки зрения подавления высших гармоник э. д. с. и н. с. обмоток и уменьшения расхода обмоточного провода; 2) одинаковыми размерами и формами всех катушек, что упрощает и облегчает изготовление обмоток; 3) относительно простой формой лобовых частей катушек, что также упрощает изготовление обмотки.

Как и якорные обмотки машин постоянного тока, двухслойные обмотки переменного тока делятся на петлевые и волновые, которые в электромагнитном отношении равноценны. Преимущественно применяются петлевые обмотки. Волновые же обмотки используются обычно при числе витков в катушке wК = 1.

Выполнение обмоток переменного тока

Формы сечения пазов обмоток статоров машин переменного тока показаны на рис, 21-24. Полузакрытые пазы обычно применяются для обмоток статоров машин мощностью до 100 кВт (при 1500 об/мин) и напряжением до 650 В. При этом обмотка обычно изолируется от стенок паза посредством трехслойной пазовой коробочки (два слоя электротехнического картона с одним слоем лакоткани или синтетической пленки посередине) толщиной 0,35—0,65 мм на сторону. В заранее изолированные пазы укладывается так называемая мягкая всыпная обмотка, т.е. обмотка из круглых проводников диаметром до 2,2— 2,5 мм. Отдельные проводники опускаются при этом в паз по одному через щель паза. Если сечение фазы должно быть больше сечения одного такого проводника, то обмотка изготовляется с необходимым количеством параллельных ветвей. Если же и эта мера недостаточна, то каждый виток выполняется из нескольких параллельных проводников. Такие обмотки имеют изоляцию класса А. Плотность тока в таких обмотках j = 5,0 ÷ 6,5А/мм2, а при РН < 0,6 кВт и больше.

Полуоткрытые пазы применяются для машин большой мощности (до 300—400 кВт при 1500 об/мин) при напряжениях до 650В. В этом случае катушка по ширине паза состоит из двух полукатушек, которые наматываются из прямоугольного провода на соответствующих шаблонах и опускаются в паз по отдельности. Высоту проводника в радиальном направлении машины при f = 50 Гц во избежание больших потерь па вихревые токи берут обычно не больше 5 мм. Если достаточного сечения фазы при этом не получается, то обмотка выполняется с параллельными ветвями. Плотность тока в таких обмотках 4,0—5,5 А/мм2.

В машинах с большей мощностью и с большим напряжением, чем указано выше, применяются открытые пазы. Обмотка при этом также выполняется из прямоугольных проводников, но катушки изолируются еще до их укладки в пазы. При этом применяется как изоляция класса А, так и изоляция более высоких классов, чаще всего класса В. Машины с повышенной надежностью (например, для шахт) изготовляются с изоляцией высоких классов также и при меньших мощностях, и в этом случае тоже применяются открытые пазы.

Обмотки с изоляцией класса А укрепляются в пазах с помощью промасленных деревянных (бук) или фибровых клиньев. При более высоких классах изоляции применяются текстолитовые, гетинаксовые или стеклотекстолитовые клинья.

Лобовые части фазных роторных обмоток опираются на обмоткодержатели и укрепляются сверху с помощью проволочных бандажей, как и у якорей машин постоянного тока. Лобовые части обмоток статора в малых машинах не имеют особого крепления. В машинах большой мощности лобовые части крепятся с учетом того, что при коротких замыканиях, когда возникают наибольшие электромагнитные силы, между лобовыми частями обмоток ротора и статора возникают силы отталкивания. При этом применяются бандажные кольца из стали, дюралюминия или бронзы, к которым во избежание их смещения привязывают лобовые части.

Из обмоток крупных машин с целью устройства релейной защиты выводятся все шесть концов (начала и концы фаз), а во многих случаях также концы отдельных параллельных ветвей. Начало и конец первой фазы обмотки маркируются С1, С4, второй фазы — С2, С5 и третьей фазы — СЗ, С6.

На практике предпочитают соединение трехфазных обмоток в звезду. Однако асинхронные двигатели малой мощности для большей универсальности их применения в сетях с различными напряжениями обычно изготовляются на два напряжения, отличающихся друг от друга в раза (220 и 380 В или 380 и 650 В). При большем напряжении обмотка статора этих двигателей соединяется в звезду, а при меньшем — в треугольник. В сверхмощных машинах на лобовые части действуют весьма большие усилия, и необходимы еще более совершенные крепления обмоток.

В мощных машинах токи велики (многие сотни и тысячи Ампер) и сечение витков обмотки статора, даже при устройстве в обмотке параллельных ветвей, получается настолько большим, что изготовление их из массивных проводников ввиду сильного поверхностного эффекта и связанного с этим увеличения потерь недопустимо.

Поверхностный эффект возникает вследствие того, что проводник с током в пазу создает вокруг себя так называемый поток рассеяния, который сцепляется с нижней частью проводника в большей степени, чем с верхней. Вследствие этого э. д. с. самоиндукции, индуктируемая этим потоком, в нижней части проводника также больше, чем в верхней, и плотность тока j в верхней части проводника больше, т. е, ток вытесняется к верхней части проводника. Подобное же вытеснение тока происходит и тогда, когда в пазу имеются два или несколько проводников большого сечения.

Для достижения практически равномерного распределения тока проводник большого сечения необходимо подразделить на ряд элементарных изолированных параллельных проводников достаточно малого сечения (до 15 мм2), которые нужно переплести (транспонировать) так, чтобы каждый проводник занимал на протяжении длины паза поочередно все положения по высоте такого составного проводника.

Стержни фазных роторов асинхронных машин делаются всегда массивными, и поэтому для крупных машин необходимо считаться с наличием достаточно сильного поверхностного эффекта в роторе при пуске (f = 50 Гц).

В высоковольтных обмотках (при UЛ.Н. > 6 кВ) нередко наблюдается явление электрической короны, вызванное большими напряженностями электрического поля вблизи поверхностей изоляции катушек. При короне воздух ионизируется, образуется озон, который является активным окислительным элементом и вызывает окисление азота. Ввиду наличия влаги образуются азотистая и азотная кислоты, которые разрушают изоляцию. Для предотвращения появления корону поверхность изоляции покрывается слоем полупроводящего лака, который вызывает перераспределение электрического поля. Этот лак содержит обычно сажу.

Режимы работы асинхронной машины

Двигательный режим (0 < s < 1). Асинхронный двигатель потребляет из сети активную мощность

К.п.д. двигателей мощностью PН = 1 ÷ 1000 кВт при номинальной нагрузке находится соответственно в пределах ηН = 0,72 ÷ 0,95. Более высокие к.п.д. имеют двигатели большей мощности и с большей скоростью вращения.

Генераторный режим (— ∞ < s < 0). Для осуществления генераторного режима работы асинхронной машины ее нужно включить в сеть переменного тока и вращать с помощью соответствующего приводного двигателя (машина постоянного тока, тепловой или гидравлический двигатель) в сторону вращения магнитного поля со скоростью п, превышающей синхронную скорость п1. Скольжение машины при этом отрицательно.

Теоретически скорость п может изменяться в пределах n1 < n < ∞ , чему соответствует изменение скольжения в пределах 0 > s > — ∞. В действительности высокие скорости вращения недопустимs по условиям механической прочности, а по условиям ограничения потерь и нагревания и сохранения высокого к. п. д. в генераторном режиме возможны абсолютные значения скольжения такого же порядка, как и в двигательном режиме.

Режим противовключения (1 < s < ∞). В этом режиме ротор приключенной к сети асинхронной машины вращается за счет подводимой извне к ротору механической энергии против вращения поля, вследствие чего скорость вращения ротора n < 0 и s > 1. На практике в этом режиме обычно 1 < s < 2.

В режиме противовключения машина потребляет из сети активную мощность и развивает положительный вращающий момент, действующий в сторону вращения поля. Но, поскольку ротор вращается в обратном направлении, на него этот момент действует тормозящим образом.

В режиме противовключения машина потребляет также механическую мощность с вала или с ротора, поскольку внешний вращающий момент действует в сторону вращения ротора. Как мощность, потребляемая из сети, так и мощность, потребляемая с вала, расходуются на потери в машине. Полезной мощности машина поэтому не развивает, а в отношении нагрева рассматриваемый режим является тяжелым. Поэтому при U1 = U рассматриваемый режим допускается лишь кратковременно.

Режим противовключения на практике используется для торможения и остановки асинхронных двигателей и приводимых ими в движение производственных механизмов. Например, в ряде случаев, при необходимости быстрой остановки двигателя, путем переключения двух питающих проводов трехфазного двигателя изменяют чередование фаз и направление вращения воля, а ротор в течение некоторого времени вращается при этом по инерции в прежнем направлении, т. е. теперь уже против поля. При п = 0 машину необходимо отключить от сети, так как иначе она придет во вращение в обратном направлении. Таким же образом может осуществляться быстрый реверс (изменение направления вращения) двигателя, прячем в этом случае, естественно, при п = 0 отключать двигатель от сети не нужно. В начале процесса реверсирования также существует режим противовключения.

Режим противовключения называют также режимом электромагнитного тормоза.

Режим короткого замыкания. Режимом короткого замыкания асинхронной машины называется ее режим при s = 1, т. е. при неподвижном роторе. Этот режим соответствует начальному моменту пуска асинхронного двигателя из неподвижного состояния. Сопротивление асинхронной машины относительно невелико, поэтому ток короткого замыкания при номинальном напряжении I = (5 ÷ 7) IН.

Механическая характеристика асинхронного двигателя представляет собой зависимость скорости вращения п от развиваемого момента на валу М2 при U1 = const и f1 = const:

или, наоборот,

Вид механических характеристик существенно зависит от величины вторичного активного сопротивления.

Процесс пуска и установившийся режим работы асинхронного двигателя. Рассмотрим процесс пуска асинхронного двигателя с короткозамкнутой вторичной обмоткой при его включении на полное напряжение сети. Так производится пуск подавляющего большинства находящихся в эксплуатации асинхронных двигателей. При рассмотрении процесса пуска не будем принимать во внимание электромагнитные переходные процессы, связанные с тем, что при включении любой электрической цепи электромагнитного механизма под напряжение и при изменении режима его работы токи достигают практически установившихся значений не сразу, а после истечения некоторого времени, величина которого пропорциональна электромагнитной постоянной времени Т, зависящей от индуктивности и активного сопротивления цепи. Обычно при пуске асинхронного двигателя время его разбега до нормальной скорости значительно больше длительности электромагнитных переходных процессов, и поэтому влияние этих процессов на процесс пуска невелико. Следовательно, процесс пуска можно рассматривать на основе полученных выше зависимостей для вращающего момента и токов в условиях работы двигателя при установившемся режиме с заданным скольжением.

На рис. 25-4 показана механическая характеристика M = f(n) асинхронного двигателя и механическая характеристика МСТ = f(n) некоторого производственного механизма, приводимого во вращение двигателем.

Уравнение моментов агрегата «двигатель — производственный механизм» имеет вид

где

представляет собой динамический вращающий момент агрегата, пропорциональный моменту его инерции J.

Если при п = 0, как это показано на рис. 25-4, пусковой момент МП > МСТ то МДИН > 0, dn/dt > 0 и ротор двигателя придет во вращение. Ускорение ротора происходит до тех пор, пока (заштрихованная область на рис. 25-4)

В точке 1 (рис. 25-4) достигается равновесие моментов

При этом МДИН = 0, dn/dt = 0 и наступает установившийся режим работы двигателя под нагрузкой со скоростью вращения п’ и скольжением s’. Величина s’ будет тем больше, чем больше МСТ и чем больше, следовательно, нагрузка двигателя. Если при работе двигателя его нагрузку (статический, момент производственного механизма МСТ) увеличить (кривая 2 на рис. 25-4), то s возрастет, а п уменьшится. При уменьшении нагрузки (кривая 3 на рис. 25-4), наоборот, s уменьшится, а n увеличится.

Переход двигателя к новому установившемуся режиму работы при изменении нагрузки физически происходит следующим образом. Если МСТ возрастет, то будет М < M, МДИН < 0, dn/dt < 0 и движение ротора двигателя станет замедляться. При этом скольжение возрастает, в соответствии с чем увеличиваются также э. д. с. E2S и ток I2 вторичной цепи. В результате электромагнитный момент М увеличивается и уменьшение п (увеличение s) происходит до тех пор, пока снова не наступит равенство моментов М = MСТ. При уменьшении нагрузки процесс протекает в обратном направлении.

Как видно из рис. 25-4, при круто поднимающейся начальной (левой) части кривой момента М = f (s) асинхронный двигатель обладает жесткой механической характеристикой, т. е. при изменении нагрузки скорость вращения двигателя изменяется мало. Все нормальные асинхронные двигатели строятся с жесткой механической характеристикой, при этом двигатель имеет высокий к. п. д.

Условия устойчивой работы. В общем случае, как показано на рис. 25-5, характеристики двигателя М = f(п) и производственного механизма МСТ = f(n) могут иметь несколько точек пересечения.

В точках 1 и 3

и в этих точках работа устойчива, а в точке 2

и работа неустойчива.

При пуске из неподвижного состояния двигатель достигает устойчивой скорости вращения в точке п'” (рис. 25-5) и дальнейшее увеличение п невозможно, так как влево от этой точки MСТ > М. Если бы двигатель работал в режиме, соответствующем точке 2 (рис. 25-5), то при малейших нарушениях режима и изменении п соотношения между М и MСТ стали бы такими, что двигатель перешел бы на работу в режиме, соответствующем одной из устойчивых точек 1 или 3. Режим работы в точке 3 на практике неприемлем, так как характеризуется малой скоростью вращения, плохим к. п. д. и наличием больших токов в обмотках, вследствие чего двигатель быстро перегревается и выходит из строя. Поэтому нормальной устойчивой областью работы двигателя считается участок механической характеристики влево от точки 4 (рис. 25-4), когда 0 < s < sm.

Перегрузочная способность асинхронного двигателя. При работе двигателя на нормальном устойчивом участке механической характеристики (влево от точек 4 на рис. 25-4 и 25-5) его нагрузку, определяемую статическим моментом МCT рабочего механизма или машины, можно постепенно поднять до величины MСТ = Мт (точки 4 на рис. 25-4 и 25-5), причем устойчивая работа сохраняется вплоть до этой точки. При дальнейшем увеличении нагрузки, когда MСТ > Мт, двигатель будет быстро затормаживаться и либо остановится, либо при характеристиках вида рис. 25-5 перейдет в устойчивый режим работы при малой скорости вращения. В обоих случаях, если двигатель не будет отключен, возникает опасный в отношении нагрева режим.

Таким образом, в принципе работа асинхронного двигателя возможна при 0 < М < Мт. Однако продолжительная работа при М ≈ Мт в отношении нагрева также недопустима.

Кроме того, при работе двигателя необходимо иметь некоторый запас по моменту, так как возможны кратковременные перегрузки случайного характера, а также кратковременные или длительные понижения напряжения сети.

Так как Mm ≈ U12, то при уменьшении U1, например, на 15% максимальный момент двигателя снизится до 0,852 = 0,72 или 72% от своего первоначального значения,

В связи с изложенным, всегда должно быть Мт > MH.

Отношение максимального момента при номинальном напряжении к номинальному

определяет перегрузочную способность двигателя и называется кратностью максимального момента.

Согласно ГОСТ для двигателей разных мощностей и скоростей вращения требуется, чтобы km > 1,7 ÷ 2,2. Меньший предел относится к двигателям со скоростью вращения п ≤ 750 об/мин.

Кратности начального пускового момента и пускового тока.

Часто асинхронные двигатели можно пускать в ход на холостом ходу или с малой нагрузкой на валу и нагружать их до номинальной или иной мощности после достижения нормальной скорости вращения. В других случаях рабочие механизмы и машины (например, вентиляторы) имеют механическую характеристику МCT = f (n) такого вида, что при п = 0 статический момент MСТ мал и постепенно повышается с увеличением п. При этом не требуется, чтобы двигатель развивал большой пусковой момент. Однако иногда двигатели необходимо пускать в ход под значительной нагрузкой (например, крановые механизмы, подъемники, различные мельницы и т. д.), и в этих случаях требуется, чтобы двигатели имели большие пусковые моменты.

Асинхронные двигатели с фазным ротором можно пускать в ход с помощью реостата, включаемого на время пуска во вторичную цепь двигателя. При этом пусковой момент двигателя увеличивается, а пусковой ток уменьшается.

Согласно ГОСТ короткозамкнутые асинхронные двигатели должны иметь при пуске под номинальным напряжением кратность начального пускового момента МП

(s = 1, п = 0)

не менее 0,7—1,8. Меньшие значения относятся к двигателям большей мощности. Кратность пускового тока

для двигателей с короткозамкнутым ротором разных мощностей и разных скоростей вращения при этом должна быть не больше 5,5—7,0.

Пригодность асинхронных двигателей с короткозамкнутым ротором и с постоянными параметрами в качестве двигателей общего назначения. Как уже указывалось, для получения хорошего к. п. д. асинхронные двигатели должны работать при номинальной нагрузке с малым скольжением (s = 0,02 ÷ 0,05) и иметь, таким образом, жесткую механическую характеристику (sm = 0,06 ÷ 0,15). Это требование для двигателей с короткозамкнутым ротором и с постоянными параметрами вступает в противоречие с требованием о достаточной величине пускового момента двигателя. Действительно, пусковой момент при этих условиях получается недостаточно большим.

В связи с этим двигатели общего назначения с короткозамкнутым ротором строятся исключительно как двигатели с переменными параметрами. При этом для увеличения активного сопротивления ротора в период пуска и для увеличения тем самым MП используется явление поверхностного эффекта или вытеснения тока в обмотке ротора.

Рабочие характеристики асинхронного двигателя.

Рабочими характеристиками асинхронного двигателя называют зависимости потребляемой мощности Р1, первичного тока I1, коэффициента мощности cos φ1, момента на валу М2, скольжения s и к. п. д. η от полезной мощности Р2 при работе с номинальным напряжением и частотой. Рабочие характеристики позволяют находить все основные величины, определяющие режим работы двигателя при различных нагрузках. Эти характеристики можно построить по расчетным данным при проектировании двигателя, по данным непосредственной нагрузки двигателя или по данным круговой диаграммы, построенной на основе опытов холостого хода и короткого замыкания.

Если известны параметры двигателя, то можно воспользоваться схемой замещения и, задавшись рядом значений скольжения в ожидаемых пределах его изменения, рассчитать сначала токи, а затем все другие величины.

На рис, 26-13 изображены рабочие характеристики асинхронного двигателя мощностью 15 кВт. При Р2 = 0 величины I1 и cos φ1 соответствуют режиму холостого хода.

АСИНХРОННЫЕ ДВИГАТЕЛИ С ВЫТЕСНЕНИЕМ ТОКА В ОБМОТКЕ РОТОРА

Глубокопазные двигатели. Устройство и принцип работы.

Для достижения хорошего к. п. д. асинхронные двигатели должны иметь малое скольжение (sH ≈ 0,02 ÷ 0,05), в соответствии с чем активное сопротивление обмоток ротора r2 у них должно быть достаточно мало. Однако, пусковой момент двигателя с таким сопротивлением обмотки ротора будет значительно меньше номинального. Это исключает возможность пуска таких двигателей с короткозамкнутым ротором под нагрузкой, а искажение кривой момента под воздействием высших гармоник поля может вызвать затруднения даже при пуске с небольшой нагрузкой. Для получения достаточного пускового момента необходимо увеличить r2. Таким образом, возникает задача создания таких асинхронных двигателей с короткозамкнутым ротором, у которых активное сопротивление обмотки ротора при пуске достаточно велико и уменьшается при переходе к нормальному режиму работы. Эту задачу решают путем использования эффекта вытеснения тока в обмотке ротора, применяя обмотку специальной конструкции.

Одной из разновидностей таких двигателей являются двигатели с глубокими пазами на роторе (рис. 27-1, а) и высокими (30—60 мм) стержнями беличьей клетки. Вытеснение тока в стержнях клетки происходит в результате действия э. д. с., индуктируемых пазовыми потоками рассеяния Фσ. Можно представить себе, что стержень (рис. 27-1, а) состоит из множества волокон, включенных параллельно. Нижние волокна охватываются большим, а верхние волокна — малым количеством линий потока Фσ. При пуске, когда частота в роторе велика (f2 = f1), в нижних волокнах стержня индуктируется большая э.д.с. самоиндукции, чем в верхних, в плотность тока распределяется по высоте проводника весьма неравномерно (рис. 27-1, б). Можно также сказать, что такое неравномерное распределение тока обусловлено тем, что нижние волокна стержня имеют большее индуктивное сопротивление, чем верхние. Таким образом, ток в стержне вытесняется по направлению к воздушному зазору, что в сущности и есть проявление поверхностного эффекта в проводниках, утопленных в ферромагнитную среду.

Под влиянием вытеснения тока, или поверхностного эффекта, активное сопротивление стержня при пуске двигателя становится большим.

Несколько упрощенно можно представить себе, что при пуске работает только верхняя часть стержня и его рабочее сечение уменьшается. Одновременно при вытеснении тока уменьшается также индуктивное сопротивление рассеяния стержня, так как поток Фσ в нижней части стержня вследствие уменьшения в ней тока ослабляется. В результате увеличения при пуске активного сопротивления стержня rст и уменьшения его сопротивления рассеяния хσ сг уменьшается угол сдвига фаз ψ2 между э. д. с. стержня, индуктируемой вращающимся полем, и током стержня, что и приводит к увеличению пускового момента.

По мере разбега двигателя при его пуске частота тока в роторе уменьшается и по достижении номинальной скорости вращения становится весьма малой (f2 = sНf1 ≤ 1 ÷ 3 Гц). При этом э. д. с., индуктируемые потоком Фσ становятся малыми, явление вытеснения тока практически исчезает и ток распределяется равномерно по сечению стержня. Активное сопротивление стержня при этом становится малым, и двигатель работает с хорошим к. п. д.

К. п. д. глубокопазных двигателей имеет такую же величину, как и к. п. д. двигателей с фазным или короткозамкнутым ротором без проявления вытеснения тока. Однако cos φ глубокопазных двигателей на 0,02—0,04 меньше, так как обмотка ротора вследствие глубокого ее утопления в сердечнике имеет повышенное сопротивление рассеяния, В связи с этим кратность максимального момента глубокопазных двигателей также несколько меньше. В то же время у глубокопазных двигателей по сравнению с обычными двигателями кратность пускового момента больше, а кратность пускового тока меньше.

Обычно у глубокопазных двигателей

На рис. 27-4 изображены характерные кривые моментов М = f(s) глубокопазного двигателя (кривая 2) и двигателя без явления вытеснения тока в обмотке ротора (кривая 1).

Двухклеточные двигатели

Устройство и принцип работы. Двухклеточные двигатели имеют на роторе две короткозамкнутые беличьи клетки, одна из которых представляет собой так называемую пусковую обмотку, а вторая — рабочую. Рабочая обмотка выполняется из медных стержней и размещается в нижних частях пазов, а пусковая обмотка изготовляется из латунных или бронзовых стержней и располагается в верхних частях пазов, ближе к воздушному зазору (рис. 27-5, а слева). Сечение стержней пусковой обмотки может быть несколько меньше, чем у рабочей обмотки. Однако сечение и теплоемкость стержней пусковой обмотки должны быть достаточно велики, чтобы предотвратить чрезмерный нагрев этой обмотки при пуске. Иногда рабочую и пусковую обмотки размещают в отдельных пазах (рис, 27-5, а справа).

В связи со сказанным активное сопротивление пусковой обмотки rП обычно в 2—4 раза больше активного сопротивления rР рабочей обмотки. Наоборот, индуктивное сопротивление рассеяния пусковой обмотки хσП в несколько раз меньше, чем хσР рабочей обмотки, поскольку последняя утоплена глубоко в стали сердечника ротора.

Вращающееся магнитное поле двигателя индуктирует в обеих обмотках ротора одинаковые э. д. с.

При пуске вследствие большой частоты тока ротора индуктивное сопротивление рабочей обмотки относительно велико и значительно больше полного сопротивления пусковой обмотки. Поэтому при пуске нагружена током в основном только пусковая обмотка, и ввиду большой величины ее активного сопротивления двигатель развивает большой пусковой момент. При разбеге двигателя частота тока ротора уменьшается, и при нормальной скорости вращения (s = 0,02 ÷ 0,05) индуктивные сопротивления рассеяния обмоток ротора будут в 20—50 раз меньше, чем при пуске. Поэтому в рабочем режиме активные сопротивления обмоток ротора значительно больше индуктивных и полные сопротивления обмотки определяются величинами активных сопротивлений. Вследствие этого при работе двигателя полное сопротивление рабочей обмотки значительно меньше, чем полное сопротивление пусковой, и током нагружена главным образом рабочая обмотка. Ввиду малости активного сопротивления этой обмотки двигатель имеет хороший к. п. д.

Таким образом, в двухклеточном двигателе при пуске происходит вытеснение тока ротора по направлению к воздушному зазору, как и в глубокопазном двигателе.

В пусковой обмотке двухклечного двигателя при тяжелых условиях пуска (большой маховой момент приводимого агрегата и пуск под нагрузкой) выделяется большое количество тепла, и эта обмотка при пуске соответственно удлиняется, в то время как рабочая обмотка при пуске остается холодной и не удлиняется. Поэтому во избежание нарушения сварных соединений стержней с торцовыми короткозамыкающими кольцами стержни пусковой и рабочей обмоток присоединяются к отдельным кольцам (рис. 27-5, 6).

Двухклеточные двигатели были предложены М. О. Доливо-Добровольским еще в 1893 г., однако широкое практическое применение их началось на 25—30 лет позднее.

Для величин к. п. д., cos φ, максимального и пускового моментов и пускового тока в общем действительны замечания, сделанные в конце в отношении глубокопазного двигателя. Необходимо, однако, отметить, что при проектировании двухклеточных двигателей имеется возможность варьировать в определенных пределах сечения и удельные сопротивления стержней отдельных клеток, а также глубину утопления рабочей клетки. В связи с этим кратности пусковых моментов и токов у двухклеточных двигателей могут изменяться в более широких пределах. Обычно у двухклеточных двигателей

Характерный вид зависимости М = f (s) двухклеточного двигателя представлен на рис. 27-4 (кривая 3).

Другие разновидности асинхронных двигателей с вытеснением тока.

Асинхронные двигатели отечественного производства.

Из числа других конструктивных вариантов двигателей с вытеснением тока наряду с рассмотренными, наибольшее распространение получили двигатели с колбовидной и трапецеидальной формой пазов (рис. 27-9). Форма выполнения короткозамкнутых колец при колбовидной форме пазов показана на рис. 27-9 справа.

Утолщение нижней части стержней (рис. 27-9) усиливает эффект изменения сопротивлений при вытеснении тока по сравнению с глубокопазным двигателем (рис. 27-1). Поэтому двигатели с пазами по схеме рис. 27-9 приближаются по своим свойствам к двухклеточпым двигателям. В то же время в технологическом отношении изготовление двигателей с пазами по схеме рис. 27-9 проще, чем двухклеточных. Наряду с двигателями с колбовидной и трапецеидальной формой паза для тяжелых условий пуска строятся также двухклеточные двигатели. Для двигателей с РН > 100 кВт и ≥ 6 обычно применяются роторы с глубокими пазами.

В двигателях с короткозамкнутым ротором при = 2 роторы часто приходится выполнять с круглыми пазами, так как небольшая высота ярма ротора не позволяет применять рассмотренные выше формы пазов. В этом случае короткозамыкающие кольца на обоих торцах ротора охватываются массивными стальными кольцами. При пуске токи в короткозамыкающих кольцах индуктируют в стальных кольцах большие токи, и в стальных кольцах возникают значительные потери. Это эквивалентно увеличению активного сопротивления вторичной обмотки, что приводит к увеличению пускового момента. В рабочем же режиме вследствие малой частоты токи, индуктируемые в стальных кольцах, незначительны. Поэтому такие двигатели по своим свойствам приближаются к глубокопазным.

В асинхронных двигателях с короткозамкнутым ротором мощностью 100—150 кВт и ниже обмотка ротора выполняется путем алюминиевой заливки. При этом с целью использования явления вытеснения тока и улучшения пусковых характеристик применяются вытянутые в радиальном направлении пазы той или иной формы (рис. 27-10), которые заливаются алюминием по всему сечению. Одновременно отливаются также короткозамыкающие кольца с вентиляционными лопатками.

В связи с изложенным необходимо отметить, что во всех изготовляемых асинхронных двигателях с короткозамкнутым ротором мощностью от 500—600 Вт и выше используется явление вытеснения тока.

Асинхронные двигатели изготовляются в виде унифицированных серий. Наиболее массовым является выпуск двигателей общепромышленного назначения с номинальными мощностями 0,6—100 кВт. В течение ряда лет на такие мощности выпускались двигатели с короткозамкнутым ротором серии А и АО, а в настоящее время выпускаются двигатели модернизированной серии А2 и АО2 с улучшенными технико-экономическими показателями (А и А2 — защищенного исполнения, АО и АО2 — закрытого обдуваемого исполнения). Роторы всех двигателей серии имеют алюминиевую заливку.

На базе нормальных двигателей серии А2 и АО2, с использованием их основных деталей и узлов, предусматривается также специальное исполнение двигателей: 1) с повышенным пусковым моментом, 2) с повышенным скольжением, 3) для текстильной промышленности, 4) многоскоростных, 5) с фазным ротором, а также ряд других специальных исполнений (малошумные на подшипниках скольжения, со встроенным электромагнитным тормозом, рудничные, для тропического климата и др.).

ПУСК ТРЕХФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И

РЕГУЛИРОВАНИЕ ИХ СКОРОСТИ ВРАЩЕНИЯ

Способы пуска асинхронных двигателей

Общая характеристика вопроса. Прямой пуск. При рассмотрении возможных способов пуска в ход асинхронных двигателей необходимо учитывать следующие основные положения: 1) двигатель должен развивать при пуске достаточно большой пусковой момент, который должен быть больше статического момента сопротивления на валу, чтобы ротор двигателя мог прийти во вращение и достичь номинальной скорости вращения; 2) величина пускового тока должна быть ограничена таким значением, чтобы не происходило повреждения двигателя и нарушения нормального режима работы сети; 3) схема пуска должна быть по возможности простой, а количество и стоимость пусковых устройств — малыми.

При пуске асинхронного двигателя на холостом ходу в активном сопротивлении его вторичной цепи выделяется тепловая энергия, равная кинетической энергии приводимых во вращение маховых масс, а при пуске под нагрузкой количество выделяемой энергии соответственно увеличивается. Выделение энергии в первичной цепи обычно несколько больше, чем во вторичной. При частых пусках, а также при весьма тяжелых условиях пуска, когда маховые массы приводимых в движение механизмов велики, возникает опасность перегрева обмоток двигателя. Подробно динамика движения электропривода и энергетические соотношения при пуске рассматриваются в курсах электропривода. Число пусков асинхронного двигателя в час, допустимое по условиям его нагрева, тем больше, чем меньше номинальная мощность двигателя и чем меньше соединенные с его валом маховые массы. Двигатели мощностью 3—10 кВт в обычных условиях допускают до 5—10 включений в час.

Асинхронные двигатели с короткозамкнутым ротором проще по устройству и обслуживанию, а также дешевле и надежнее в работе, чем двигатели с фазным ротором.

Поэтому всюду, где это возможно, применяются двигатели с короткозамкнутым ротором и подавляющее большинство находящихся в эксплуатации асинхронных двигателей являются двигателями с короткозамкнутым ротором.

Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора (рис. 28-1, а). Такой пуск называется прямым.

При этом пусковой ток двигателя IП = (4 ÷ 7,0) IН.

Современные асинхронные двигатели с короткозамкнутым ротором проектируются с таким расчетом, чтобы они по величине возникающих при пуске электродинамических усилий, действующих на обмотки, и по условиям нагрева обмоток допускали прямой пуск. Поэтому прямой пуск всегда возможен, когда сеть достаточно мощна и пусковые токи двигателей не вызывают недопустимо больших падений напряжения в сети (не более 10—15%). Современные энергетические системы, сети и сетевые трансформаторные подстанции обычно имеют такие мощности, что в подавляющем большинстве случаев возможен прямой пуск асинхронных двигателей.

Нормальным способом пуска двигателей с короткозамкнутым ротором поэтому является прямой пуск. Нередко таким образом осуществляется пуск двигателей мощностью в тысячи киловатт.

Если по условиям падения напряжения в сети прямой пуск двигателя с короткозамкнутым ротором невозможен, применяются различные способы пуска двигателя при пониженном напряжении (рис. 28-1, 6, в и г).

Однако при этом пропорционально квадрату напряжения на зажимах обмотки статора или квадрату пускового тока двигателя понижается также пусковой момент, что является недостатком пуска при пониженном напряжении.

Поэтому эти способы пуска применимы, когда возможен пуск двигателя на холостом ходу или под неполной нагрузкой. Необходимость пуска при пониженном напряжении встречается чаще всего у мощных высоковольтных двигателей.

Реакторный пуск осуществляется согласно схеме рис. 28-1,6. Сначала включается выключатель В1, и двигатель получает питание через трехфазный реактор (реактивную или индуктивную катушку) Р, сопротивление которого хр ограничивает величину пускового тока. По достижении нормальной скорости вращения включается выключатель В2, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.

Пусковые реакторы строятся обычно с ферромагнитным сердечником и рассчитываются по нагреву только на кратковременную работу, что позволяет снизить их вес и стоимость. Для весьма мощных двигателей применяются также реакторы без ферромагнитного сердечника, с обмотками, укрепленными, на бетонном каркасе. Выключатель В1 выбирается на такую отключающую мощность, которая позволяет отключить двигатель при глухом коротком замыкании за выключателем, а выключатель В2 может иметь низкую отключающую мощность.

Автотрансформаторный пуск осуществляется по схеме рис. 28-1, в в следующем порядке. Сначала включаются выключатели В1 и В2, и на двигатель через автотрансформатор AT подается пониженное напряжение. После достижения двигателем определенной скорости выключатель В2 отключается, и двигатель получает питание через часть обмотки автотрансформатора AT, который в этом случае работает как реактор. Наконец включается выключатель B3, в результате чего двигатель получает полное напряжение.

Таким образом, при автотрансформаторном пуске МП и IП.С. уменьшаются в одинаковое число раз. В то же время при реакторном пуске пусковой ток двигателей IП.Д. является также пусковым током в сети IП.С. и пусковой момент МП уменьшается быстрее пускового тока (в квадратичном отношении). Поэтому при одинаковых величинах IП.С. при автотрансформаторном пуске пусковой момент будет больше. Однако это преимущество автотрансформаторного пуска достигается ценой значительного усложнения и удорожания пусковой аппаратуры. Поэтому автотрансформаторный пуск применяется реже реакторного, при более тяжелых условиях, когда реакторный пуск не обеспечивает необходимого пускового момента.

Пуск переключением «звезда — треугольник» (рис. 28-1, г) может применяться в случаях, когда выведены все шесть концов обмотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 В и с соединением обмоток Y/Δ работает от сети 220 В. В этом случае при пуске обмотка статора включается в звезду (нижнее положение переключателя П на рис. 28-1, г), а при достижении нормальной скорости вращения переключается в треугольник (верхнее положение переключателя П на рис. 28-1, г). При таком способе пуска, по сравнению с прямым пуском при соединении обмотки в треугольник, напряжение фаз обмоток уменьшается в раза, пусковой момент уменьшается в ( )2 = 3 раза, пусковой ток в фазах обмотки уменьшается в раза, а в сети — в * = 3 раза. Таким образом, рассматриваемый способ пуска равноценен автотрансформаторному пуску при kАТ = .

Недостатком этого способа пуска по сравнению с реакторным и автотрансформаторным является то, что при пусковых переключениях цепь двигателя разрывается, что связано с возникновением коммутационных перенапряжений. Этот способ ранее широко применялся при пуске низковольтных двигателей, однако с увеличением мощности сетей потерял свое прежнее значение и в настоящее время используется сравнительно редко.

Пуск двигателя с фазным ротором с помощью пускового реостата. Двигатели с фазным ротором применяются значительно реже двигателей с короткозамкнутым ротором. Они используются в следующих случаях: 1) когда двигатели с короткозамкнутым ротором неприемлемы по условиям регулирования их скорости вращения; 2) когда статический момент сопротивления на валу при пуске МСТ велик и поэтому асинхронный двигатель с короткозамкнутым ротором с пуском при пониженном напряжении неприемлем, а прямой пуск такого двигателя недопустим по условиям воздействия больших пусковых токов на сеть; 3) когда приводимые в движение массы настолько велики, что выделяемая во вторичной цепи двигателя тепловая энергия вызывает недопустимый нагрев обмотки ротора в виде беличьей клетки.

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора (рис. 28-3). Применяются проволочные, с литыми чугунными элементами, а также жидкостные реостаты. По условиям нагрева реостаты рассчитываются на кратковременную работу. Сопротивления металлических реостатов для охлаждения обычно помещают в бак с трансформаторным маслом. Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически (в автоматизированных установках) с помощью контакторов или контроллера с электрическим приводом. Жидкостный реостат представляет собой сосуд с электролитом (например, водный раствор соды или поваренной соли), в который опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов.

Рассмотрим пуск двигателя с фазным ротором с помощью ступенчатого металлического реостата (рис. 28-3), управляемого контакторами К.

Перед пуском щетки должны быть опущены на контактные кольца ротора, а все ступени реостата включены. Далее в процессе пуска поочередно включаются контакторы КЗ, К2, К1. Характеристики вращающего момента двигателя М = f (s) и вторичного тока I2 = f (s) при работе на разных ступенях реостата изображены на рис. 28-4, а и б. Предположим, что сопротивления ступеней пускового реостата и интервалы времени переключения ступеней подобраны так, что момент двигателя М при пуске меняется в пределах от некоторого MМАКС до некоторого ММИН и при включении в сеть МП = ММАКС > МСТ (кривая 3 на рис. 28-4, а). В начале пуска двигатель работает по характеристике 3, ротор приходит во вращение, скольжение s начинает уменьшаться, и при s = s3, когда М = ММИН производится переключение реостата на вторую ступень. При этом двигатель будет работать по характеристике 2, и при дальнейшем разбеге двигателя скольжение уменьшится от s = s3 до s = s2, а момент — от значения М = MМАКС до М = ММИН. Затем производится переключение на первую ступень и т. д. После выключения последней ступени реостата двигатель переходит на работу по естественной характеристике 0 и достигает установившейся скорости вращения.

При наличии у двигателя короткозамыкающего механизма после окончания пуска щетки с помощью этого механизма поднимаются с контактных колец и кольца замыкаются накоротко, а реостат возвращается в пусковое положение. Тем самым пусковая аппаратура приводится в готовность к следующему пуску. Необходимо отметить, что дистанционное управление короткозамыкающим механизмом контактных колец сложно осуществить; это затрудняет автоматическое управление двигателем. Поэтому в последнее время фазные асинхронные двигатели строятся без таких механизмов. При этом щетки постоянно налегают на контактные кольца, что несколько увеличивает потери двигателя и износ щеток. Количество ступеней пускового реостата с целью упрощения схемы пуска и удешевления аппаратуры в автоматизированных установках выбирается небольшим (обычно 2—3 ступени).

Пусковые характеристики асинхронного двигателя при реостатном пуске наиболее благоприятны, так как высокие значения моментов достигаются при невысоких значениях пусковых токов.

Самозапуск асинхронных двигателей. В электрических сетях в результате коротких замыканий случаются кратковременные, длительностью до нескольких секунд, большие понижения напряжения или перерывы питания. Включенные в сеть асинхронные двигатели при этом начинают затормаживаться и чаще всего полностью останавливаются. При восстановлении напряжения начинается одновременный самозапуск не отключившихся от сети двигателей. Такой самозапуск двигателей способствует быстрейшему восстановлению нормальной работы производственных механизмов и поэтому целесообразен, а в ряде случаев даже чрезвычайно желателен. Однако одновременный самозапуск большого количества асинхронных двигателей загружает сеть весьма большими токами, что вызывает в ней большие падения напряжения и задерживает процесс восстановления нормального напряжения. Время самозапуска двигателей при этом увеличивается, а в ряде случаев величина пускового момента недостаточна для пуска двигателя. Кроме того, самозапуск некоторых двигателей в подобных условиях недопустим или невозможен (например, двигатели с фазным ротором с пуском с помощью реостата и двигатели с короткозамкнутым ротором с пуском с помощью реакторов и автотрансформаторов, не снабженные специальной автоматической аппаратурой для автоматического самозапуска). Поэтому целесообразно возможность самозапуска использовать только для двигателей наиболее ответственных производственных механизмов, а все остальные двигатели снабдить релейной защитой для их отключения от сети при глубоких падениях напряжения. Самозапуск асинхронных двигателей широко применяется для двигателей механизмов электрических станций.

Регулирование скорости вращения асинхронных двигателей

с короткозамкнутым ротором

Общие положения.

Скорость вращения ротора асинхронного двигателя

Способы регулирования скорости вращения асинхронных двигателей, согласно выражению (28-3), можно подразделить на два класса: 1) регулирование скорости вращения первичного магнитного поля

что достигается либо регулированием первичной частоты f1 либо изменением числа пар полюсов р двигателя; 2) регулирование скольжения двигателя s при n1 = const. В первом случае к. п. д. двигателя остается высоким,, а во втором случае к. п. д. снижается тем больше, чем больше s, так как при этом мощность скольжения

теряется во вторичной цепи двигателя (мощность скольжения используется полезно только в каскадных установках).

Рассмотрим здесь главнейшие способы регулирования скорости вращения.

Регулирование скорости изменением первичной частоты (частотное регулирование) требует применения источников питания с регулируемой частотой (синхронные генераторы с переменной скоростью вращения, ионные или полупроводниковые преобразователи частоты и др.). Поэтому данный способ регулирования используется главным образом в случаях, когда для целых групп двигателей необходимо повышать (п > 3000 об/мин) скорости вращения (например, ручной металлообрабатывающий инструмент, некоторые механизмы деревообрабатывающей промышленности и др.) или одновременно и плавно их регулировать (например, двигатели рольгангов мощных прокатных станов и др.). С развитием полупроводниковых преобразователей все более перспективным становится также индивидуальное частотное регулирование скорости вращения двигателей. Управление инвертором при этом производится особым преобразователем частоты вне зависимости от положения ротора двигателя. Величина напряжения регулируется с помощью выпрямителя.

Если пренебречь относительно небольшим падением напряжения в первичной цепи асинхронного двигателя, то

Существенное изменение величины потока Ф при регулировании п нежелательно, так как увеличение Ф против нормального вызывает увеличение насыщения магнитной цепи и сильное увеличение намагничивающего тока, а уменьшение Ф вызывает недоиспользование машины, уменьшение перегрузочной способности и увеличение тока I2 при том же значении М. Поэтому в большинстве случаев целесообразно поддерживать Ф = const. При этом из соотношения (28-6) следует, что одновременно с регулированием частоты пропорционально ей необходимо изменять также напряжение, т. е. поддерживать

Отступление от этого правила целесообразно только в случаях, когда MCT быстро уменьшается с уменьшением п (например, приводы вентиляторов, когда МCT = п2). В этом случае более быстрое уменьшение U1 по сравнению с f1 вызывает уменьшение Ф и улучшает энергетические показатели двигателя и в то же время уменьшение Мт с точки зрения перегрузочной способности не опасно.

При широком диапазоне регулирования правильнее поддерживать

К недостаткам частотного регулирования относится громоздкость и высокая стоимость питающей установки.

Регулирование скорости изменением числа пар полюсов р используется обычно для двигателей с короткозамкнутым ротором, так как при этом требуется изменять р только для обмотки статора. Изменять р можно двумя способами: 1) применением на статоре нескольких обмоток, которые уложены в общих пазах и имеют разные числа пар полюсов р; 2) применением обмотки специального типа, которая позволяет получить различные значения р путем изменения (переключения) схемы соединений обмотки. Предложено значительное количество различных схем обмоток с переключением числа пар полюсов, однако широкое распространение из них получили только некоторые. Применение нескольких обмоток невыгодно, так как при этом из-за ограниченного места с пазах сечение проводников каждой из обмоток нужно уменьшать, что приводит к снижению мощности двигателя. Использование обмоток с переключением числа пар полюсов вызывает усложнение коммутационной аппаратуры, в особенности, если с помощью одной обмотки желают получить более двух скоростей вращения. Несколько ухудшаются также энергетические показатели двигателей.

Двигатели с изменением числа пар полюсов называются многоскоростными. Обычно они выпускаются на 2, 3 или 4 скорости вращения.

Многоскоростные двигатели применяются в металлорежущих и деревообрабатывающих станках, в грузовых и пассажирских лифтах, для приводов вентиляторов и насосов и в ряде других случаев.

При переключении многоскоростной обмотки магнитные индукции на отдельных участках магнитной цепи в общем случае изменяются, что необходимо иметь в виду при проектировании двигателя, чтобы, с одной стороны, добиться по возможности более полного использования материалов двигателя, а с другой не допустить чрезмерного насыщения магнитной цепи.

Вес и стоимость многоскоростных двигателей несколько больше, чем у нормальных асинхронных двигателей такой же мощности. Тем не менее это лучший и наиболее широко применяемый способ регулирования скорости короткозамкнутых двигателей.

Регулирование скорости уменьшением величины первичного напряжения. При уменьшении U1 момент двигателя изменяется пропорционально U12 и соответственно изменяются механические характеристики (рис. 28-10), в результате чего изменяются также значения рабочих скольжений s1, s2, s3 … при данном виде зависимости MCT= f(s). Очевидно, что регулирование s в этом случае возможно в пределах 0 < s < sm. Для получения достаточно большого диапазона регулирования скорости необходимо, чтобы активное сопротивление цепи ротора и соответственно sm были, достаточно велики (рис. 28-10, б).

Следует учитывать, что во вторичной цепи возникают потери, равные мощности скольжения PS и вызывающие повышенный нагрев ротора.

Этот метод регулирования скорости применяется также для двигателей с фазным ротором, причем в этом случае в цепь ротора включаются добавочные сопротивления.

В связи с пониженным к. п. д. и трудностями регулирования напряжения рассматриваемый метод применяется только для двигателей малой мощности. При этом для регулирования U1 можно использовать регулируемые автотрансформаторы или сопротивления, включенные последовательно в первичную цепь.

В последние годы для этой цели все чаще применяют (рис. 28-11) реакторы насыщения, регулируемые путем подмагничивания постоянным током. При изменении величины постоянного тока подмагничивания индуктивное сопротивление реактора изменяется, что приводит к изменению напряжения на зажимах двигателя. Путем автоматического регулирования тока подмагничивания можно расширить зону регулирования скорости в область s > sm и получить при этом жесткие механические характеристики.

Импульсное регулирование скорости (рис. 28-12) производится путем периодического включения двигателя в сеть и отключения его от сети или путем периодического шунтирования с помощью контактора К сопротивлений, включенных последовательно в цепь статора, или полупроводниковых вентилей. При этом двигатель беспрерывно находится в переходном режиме ускорения или замедления скорости вращения ротора и в зависимости от частоты и продолжительности импульсов работает с некоторой, приблизительно постоянной скоростью вращения. Подобное регулирование скорости применяется только для двигателей весьма малой мощности (РН<30 ÷ 50 Вт).

Регулирование скорости вращения асинхронных двигателей с фазным ротором

Для двигателей с фазным ротором можно в принципе использовать все те же способы регулирования скорости вращения, как и для двигателей с короткозамкнутым ротором. Однако на практике из числа этих способов для двигателей с фазным ротором применяется только способ регулирования скорости вращения с помощью реакторов насыщения.

Ниже рассмотрим способы регулирования скорости вращения, которые специфичны для двигателей с фазным ротором и в которых используется возможность включения регулирующих устройств во вторичную цепь.

Регулирование скорости вращения с помощью реостата в цепи ротора производится по той же схеме рис. 28-3, что и реостатный пуск двигателя, но реостат при этом должен быть рассчитан на длительную работу. При увеличении активного сопротивления вторичной цепи вид механической характеристики двигателя изменяется: характеристика становится более мягкой и скольжение двигателя при том же моменте нагрузки МСТ увеличивается.

Рассматриваемый способ регулирования скорости связан со значительными потерями энергии в сопротивлении rД и поэтому малоэкономичен. Он применяется главным образом при кратковременной или повторно-кратковременной работе (например, пуско-наладочные режимы некоторых машин, крановые устройства и пр.), а также в приводах с вентиляторным моментом. В последнем случае мощность на валу с уменьшением скорости быстро снижается, и поэтому мощность скольжения и потери в цепи ротора по величине ограничены.

К недостаткам реостатного регулирования скорости относятся также мягкость механических характеристик и зависимость диапазона регулирования от величины нагрузки. В частности, регулирование скорости на холостом ходу практически невозможно.

Регулирование скорости вращения посредством введения добавочной э. д. с. во вторичную цель двигателя.

Регулирование скорости вращения асинхронного двигателя путем увеличения его скольжения всегда связано с выделением во вторичной цепи двигателя значительной электрической мощности скольжения

большая часть которой при реостатном регулировании теряется в реостате. Поэтому, естественно, возникает мысль о полезном использовании этой мощности и о повышении таким образом к. п. д. установки.

Полезное использование мощности скольжения возможно, если вместо реостата присоединить к контактным кольцам фазного двигателя приемник электрической энергии в виде подходящей для этой цели вспомогательной электрической машины.

Эта машина будет работать в режиме двигателя и оказывать воздействие на регулируемый асинхронный двигатель, развивая напряжение на его вторичных зажимах, так как при вращении вспомогательной машины в ее якоре индуктируется э. д. с. Можно также сказать, что задачей вспомогательной машины, как и реостата при реостатном регулировании, является создание «подпора» напряжения на контактных кольцах регулируемого асинхронного двигателя, ибо наличие определенного напряжения на кольцах U2K — непременное условие выдачи с этих колец определенной мощности

во внешнюю цепь двигателя. Вместе с тем, вспомогательная машина в отличие от реостата позволяет полезно использовать эту мощность.

Таким образом, с помощью добавочной э. д. с. EД, путем изменения ее величины и направления, можно осуществить плавное двухзонное регулирование скорости двигателя: ниже и выше синхронной.

Если пренебречь потерями, то мощность источника добавочной э, д. с. равна мощности скольжения sPЭМ причем при s > 0 этот источник является приемником и потребляет энергию из вторичной цепи двигателя, а при s < 0 — генератором и отдает мощность во вторичную цепь двигателя. Механическая мощность, развиваемая магнитным полем двигателя,

при s > 0 будет меньше PЭМ а при s < 0 в соответствии с изменением знака мощности скольжения РМХ > РЭМ.

Каскад асинхронного двигателя с машиной постоянного тока. Реализация рассмотренного способа регулирования скорости вращения асинхронного двигателя посредством добавочной э. д. с. осуществляется в каскадных соединениях двигателя со вспомогательными электрическими машинами. Рассмотрим здесь каскадные соединения асинхронного двигателя с машиной постоянного тока.

На рис. 28-14, а показана схема каскада фазного асинхронного двигателя АД, приводящего в движение некоторую рабочую машину PM, с машиной постоянного тока независимого возбуждения МПТ. Цепь якоря МПТ приключена к контактным кольцам асинхронного двигателя через ионный или полупроводниковый выпрямитель В, соединенный по трехфазной мостовой схеме. Выпрямитель преобразовывает переменный ток частоты скольжения f2 = sf1 во вторичной цепи АД в постоянный ток в цепи якоря МПТ. Э. д. с. якоря МПТ в данном случае и является той рассмотренной выше добавочной э. д. с. EД, которая (в данном случае с помощью выпрямителя В) вводится во вторичную цепь двигателя АД. Регулирование величины этой э. д. с. и скорости вращения АД производится путем регулирования тока возбуждения МПТ.

На схеме рис. 28-14, а машина постоянного тока МПТ расположена на валу асинхронного двигателя АД. Она преобразовывает мощность скольжения PS, потребляемую из вторичной цепи АД, в механическую мощность, которая через вал двигателя АД вместе с механической мощностью РМХ двигателя передается рабочей машине РМ.

Такой каскад называется электромеханическим. Если при регулировании скорости вращения обеспечить полное использование мощности АД (Р1 = РН = const) и пренебречь потерями, то в этом каскаде мощность, передаваемая рабочей машине РМ,

также остается при всех скоростях постоянной и равной номинальной мощности. В связи с этим электромеханический каскад иногда условно называют также каскадом постоянной мощности. Необходимая номинальная мощность вспомогательной машины каскада (в данном случае МПТ) зависит от пределов регулирования скорости:

 

Каскад с выпрямителями допускает регулирование скорости только вниз от синхронной (s>0). Если заменить выпрямитель управляемым ионным или полупроводниковым преобразователем, способным производить также обратное преобразование — постоянного тока в переменный, то можно осуществить также регулирование скорости вверх от синхронной (s < 0). Указанные на рис. 28-14 направления передачи мощности скольжения при s < 0 изменятся на обратные. Ввиду сложности системы управления таким преобразователем и других причин эти каскады до сих пор применения не получили.

На рис. 28-14, б изображена схема каскада, которая отличается от схемы рис. 28-14, а тем, что МПТ соединена механически со вспомогательной асинхронной или синхронной машиной ВМ. В этом каскаде мощность скольжения РS при s > 0 передается с помощью ВМ, работающей в режиме генератора, обратно в сеть переменного тока. При s < 0 ВМ работает в режиме двигателя. Такой каскад называется электрическим. В этом каскаде машине РМ передается только механическая мощность двигателя АД,

которая при Р1 = РН = const уменьшается пропорционально скорости вращения. Момент на валу РМ при этом остается постоянным, вследствие чего такой каскад иногда условно называют также каскадом с постоянным моментом. Машины ВМ и МПТ на схеме рис. 28-14, б можно заменить трансформатором и полупроводниковым преобразователем постоянного тока в переменный и обратно.

Каскады позволяют осуществить экономичное и плавное регулирование скорости вращения асинхронного двигателя, однако вспомогательные машины и преобразователи удорожают установку. Поэтому каскады целесообразно применять только для привода мощных производственных механизмов, требующих регулирования скорости в достаточно широких пределах (например, прокатные станы, весьма мощные вентиляторы и др.). Рассмотренные выше каскадные соединения в связи с использованием в них ионных или полупроводниковых вентилей называют также вентильными каскадами.

Существуют также другие системы каскадов, в частности с использованием коллекторных машин переменного тока. Каскадные установки выполняются на мощности в сотни и тысячи киловатт с регулированием скорости вращения в пределах до 3 : 1 и больше.

Асинхронные машины с неподвижным ротором

Фазорегулятор (рис. 29-1, а) представляет собой асинхронную машину с фазным ротором, ротор которой заторможен и может быть вручную или с помощью вспомогательного (исполнительного) двигателя повернут относительно статора на 360° эл. Торможение и поворот ротора осуществляется обычно с помощью самотормозящейся червячной передачи. Первичная сторона фазорегулятора присоединяется к сети, а вторичная — к нагрузке (сопротивления ZНГ на рис, 29-1, а).

Фазорегулятор представляет собой в сущности поворотный трансформатор с регулируемой фазой вторичного напряжения относительно первичного. Фазорегуляторы находят применение главным образом в лабораториях, в частности, при испытании счетчиков электрической энергии и других приборов и аппаратов.

Необходимо иметь в виду, что на ротор фазорегулятора, когда он нагружен, действует вращающий момент. Это же относится и к другим рассматриваемым ниже машинам с заторможенным ротором.

Трехфазный индукционный регулятор служит для регулирования напряжения трехфазной сети переменного тока. Обмотки регулятора включаются по схеме автотрансформатора, и регулятор представляет собой, в сущности, поворотный автотрансформатор.

Схема соединений обмоток наиболее широко применяемого трехфазного индукционного регулятора представлена на рис. 29-2, а. Одна из обмоток (w1) является первичной и включается параллельно в сеть первичного напряжения U1, а вторичная обмотка (w2) включается в эту сеть последовательно. В качестве первичной обмотки обычно используют обмотку ротора, так как при этом необходимо вывести с помощью контактных колец и щеток или гибких проводников только три конца обмотки.

Однофазные сельсины

Сельсины (сокращение, происшедшее от английского слова selfsynchronizing — самосинхронизирующийся) применяются чаще всего для синхронного поворота или вращения двух или нескольких осей, не связанных друг с другом механически, а также для некоторых других целей.

Однофазные сельсины чаще всего имеют следующее устройство (рис. 31-8), На явно-выраженных полюсах статора расположена сосредоточенная обмотка возбуждения В, а в пазах цилиндрического ротора — три распределенные обмотки синхронизации С, которые сдвинуты относительно друг друга в пространстве на 120° эл. и вполне аналогичны трехфазной обмотке нормальной машины переменного тока. Обмотки ротора соединяются с внешними цепями с помощью контактных колец и щеток. Сердечники статора и ротора собраны из листовой электротехнической стали.

Рассмотрим работу однофазных сельсинов.

В индикаторном режиме работы (рис. 31-8) один сельсин-датчик Д управляет работой одного или нескольких сельсинов-приемников П. Обмотки возбуждения В этих сельсинов включаются в общую сеть, а обмотки синхронизации С соединяются друг с другом, как показано на рис. 31-8. Пульсирующее поле возбуждения индуктирует э. д. с. в «фазах» обмоток синхронизации. Если углы поворота соответствующих фаз датчика βД и приемника βП по отношению к осям полюсов одинаковы (βД = βП), то э. д. с. соединенных друг с другом «фаз» обмоток синхронизации также одинаковы:

и направлены встречно. При этом в обмотках синхронизации не возникает никаких токов и электромагнитные моменты сельсинов равны нулю. Если же роторы сельсинов будут занимать неодинаковое положение и поэтому тек называемый угол рассогласования

будет не равен нулю, то указанные выше равенства э. д. с. нарушатся, в обмотках синхронизации возникнут токи и на роторы сельсинов будут действовать электромагнитные моменты МД и МП. Более подробный анализ этого вопроса показывает, что моменты датчика и приемника имеют разные знаки и оба действуют в направлении уменьшения угла рассогласования Δβ. Если бы момент сопротивления на валу сельсина-приемника был равен нулю, то Δβ = 0 и ротор этого сельсина в точности воспроизводил бы движения ротора сельсина-датчика, притом не только в режиме медленного поворота ротора, но и при его вращении с определенной скоростью. В действительности на ротор сельсина-приемника действуют определенные, хотя и небольшие тормозные моменты. Это моменты от трения в подшипника, на контактных кольцах и о воздух в сельсине, а также небольшой момент сопротивления механизма, соединенного с валом сельсина-приемника (стрелка или шкала указательного прибора — индикатора, движок небольшого реостата и др.). Поэтому всегда существует небольшая ошибка Δβ в передаче угла. Некоторая ошибка возникает также в результате различных неточностей в изготовлении сельсинов, зубчатого строения их ротора и т. д.

Сельсины различных классов точности имеют максимально допустимые значения углов рассогласования (ошибок) в пределах 0,25—2,5°. Максимальный момент сельсинов-приемников обычно находится в пределах 200—2000 гс * см.

Бесконтактные сельсины (рис. 31-9), предложенные А. Г. Иосифьяном и А. Б. Свечарником в 1938 г., имеют то преимущество, что отсутствие скользящих щеточных контактов увеличивает надежность работы сельсинов и уменьшает их погрешности в виду уменьшения потерь на трение. В таких сельсинах обе обмотки размещаются на статоре 1, а ротор 3 не имеет обмоток. Обмотки синхронизации 5 этого сельсина располагаются на статоре, который по своей конструкции аналогичен статору асинхронного двигателя. Обмотка возбуждения 2 имеет вид кольцевых коаксиальных катушек, охватывающих ротор. Особенностью устройства ротора является то, что он имеет немагнитную часть 4, благодаря чему полюсы ротора в магнитном отношении разделены и поток Ф направляется из одного полюса ротора через неподвижный внешний магнитопровод 6 в другой полюс ротора и через ротор в статор. В результате этого при неподвижной обмотке возбуждения удается получить в воздушном зазоре между ротором и статором магнитное поле такого же вида, как и в обычном сельсине.

Бесконтактные сельсины получили значительное распространение, однако их недостатками являются: 1) усложнение конструкции, 2) удвоенная величина воздушных зазоров в магнитной цепи, 3) повышенные размеры и вес.

Сельсины также изготовляются для работы при f = 50 ÷ 1000 Гц.

МАГНИТНЫЕ ПОЛЯ И ОСНОВНЫЕ ПАРАМЕТРЫ СИНХРОННЫХ МАШИН

Магнитное поле и параметры обмотки возбуждения

Явнополюсная машина. Обмотка возбуждения создает магнитный поток возбуждения синхронной машины (рис. 32-1), который сцепляется с обмоткой якоря и индуктирует в ней э. д. с. Расчет магнитной цепи явнополюсной синхронной машины производится подобно расчету магнитной цепи машины постоянного тока. Магнитная характеристика Ф = f (if) синхронной машины имеет такой же вид, как и у других электрических машин. Величины, относящиеся к обмотке возбуждения синхронной машины, будем обозначать индексом f, как это принято в большинстве литературных источников.

На рис. 32-2, а изображена картина магнитного поля обмотки возбуждения в воздушном зазоре явнополюсной синхронной машины на протяжении одного полюсного деления. На рис. 32-2, б кривая 1 представляет собой распределение магнитной индукции поля возбуждения Bf на поверхности якоря (статора). Как уже указывалось, при проектировании синхронных машин принимаются меры к тому, чтобы эта кривая по возможности приближалась к синусоиде. Однако вполне синусоидального распределения Bf достичь невозможно.

Магнитное поле и параметры обмотки якоря

Общие положения.

При нагрузке обмотки якоря синхронной машины током она создает собственное магнитное поле, которое называется полем реакции якоря.

В нормальных машинах постоянного тока, с установкой щеток на геометрической нейтрали, поле реакции якоря является поперечным, т. е, действует поперек оси главных полюсов. Поэтому оно не индуктирует э. д. с. в обмотке якоря и оказывает относительно слабое влияние на величину потока в воздушном зазоре и на характеристики машины.

В отличие от машин постоянного тока в синхронной машине влияние реакции якоря на величину магнитного потока весьма значительно. Это обусловлено прежде всего тем, что в синхронной машине в общем случае возникает также значительная продольная реакция якоря усиливающая или ослабляющая поток полюсов. Кроме того, поле поперечной реакции якоря синхронной машины также индуктирует значительную э. д. с. в обмотке якоря.

Поэтому реакция якоря синхронной машины оказывает весьма значительное влияние на характеристики и поведение синхронной машины как при установившихся, так и при переходных режимах работы.

Индуктор (ротор) явнополюсной машины имеет магнитную несимметрию, так как ввиду наличия большого междуполюсного пространства магнитное сопротивление потоку, действующему по направлению поперечной оси q, т. е. по оси междуполюсного пространства, значительно больше магнитного сопротивления потоку, действующему по продольной оси d. Поэтому одинаковая по величине н. с. якоря при ее действии по продольной оси создает больший магнитный поток, чем при действии по поперечной оси. Кроме того, как ротор явнополюсной, так и ротор неявнополюсной машины имеют также электрическую несимметрию, так как их обмотки возбуждения расположены только по продольной оси d, т. е. создают поток, действующий по оси d, и сами сцепляются только с потоком якоря, действующим по этой же оси. Электрическая несимметрия индукторов синхронных машин существенным образом проявляется при несимметричных и переходных режимах их работы.

Характеристики синхронных генераторов

Среди разнообразных характеристик синхронных генераторов отдельную группу составляют характеристики, которые определяют зависимость между напряжением на зажимах якоря U, током якоря I и током возбуждения if при f = fH или п = пH и φ = const в установившемся режиме работы. Эти характеристики дают наглядное представление о ряде основных свойств синхронных генераторов.

Они могут быть построены по расчетным данным, с помощью векторных диаграмм, или по данным соответствующих опытов. Характеристики явнополюсных и неявнополюсных генераторов в основном одинаковы.

Схемы для снятия рассматриваемых ниже характеристик опытным путем изображены на рис. 33-5. На рис. 33-5, а обмотка якоря Я нагружается с помощью симметричных регулируемых нагрузочных сопротивлений ZНГ (например, трехфазный реостат и трехфазная индуктивная катушка, включаемые параллельно).

На рис. 33-5, б генератор нагружается на сеть UC через индукционный регулzтор напряжения, или регулируемый трехфазный трансформатор, или автотрансформатор РТ. Активная мощность генератора в обоих случаях регулируется путем изменения момента двигателя, вращающего генератор. В схеме рис. 33-5, б воздействие на РТ изменяет напряжение генератора и его реактивную мощность или cos φ. На практике удобно пользоваться схемой рис. 33-5, б.

На рис. 33-5 предполагается, что обмотка возбуждения ОВ питается от постороннего источника. Регулирование тока if в обоих производится с помощью реостата R. Величина cos φ проверяется по показаниям двух ваттметров.

Характеристика холостого хода

Характеристика холостого хода, дающая зависимость E0=f(iB) при I = 0 и f = fН, снимается в восходящей и нисходящей ветвях. Площадь, ограниченная этими кривыми, определяется величиной гистерезиса магнитной цепи ротора. При пользовании характеристикой холостого хода для построения диаграмм напряжения и других характеристик рекомендуется брать нисходящую ветвь с нулем, помещенным в точке пересечения кривой с осью абсцисс (рис. 11-1, сплошная кривая).

Характеристика холостого хода, а также и другие характеристики синхронного генератора могут быть построены в относительных единицах, чем достигается лучшая оценка свойств машины.

Однако при построении характеристики холостого хода за единицу обычно принимается не ток возбуждения i, а ток возбуждения iB0, соответствующий по характеристике холостого хода номинальному напряжению (рис. 11-1).

Характеристики короткого замыкания

Характеристика трехфазного короткого замыкания (рис. 11-3) снимается при замыкании зажимов всех фаз обмотки якоря накоротко (симметричное короткое замыкание) и определяет зависимость:

При коротком замыкании магнитная система машины оказывается ненасыщенной, и поэтому характеристика короткого замыкания носит прямолинейный характер и имеет изгиб только при величинах тока, значительно превышающих номинальный ток IH.

Получающиеся при двухфазном и однофазном коротком замыкании зависимости

носят также прямолинейный характер, но вследствие уменьшения величины реакции якоря характеристика IK2=f(iB) проходит выше характеристики IK3=f(iB), а характеристика IKl=f(iB) проходит выше характеристики IK2 = f(iB) (рис. 11-3).

Если снимать характеристики короткого замыкания при переменной скорости вращения, то ток короткого замыкания практически не будет зависеть от скорости вращения, так как индуктивные сопротивления и э. д. с., индуктированная обмоткой возбуждения, изменяются пропорционально частоте и, следовательно, пропорционально скорости вращения.

Только при очень малых частотах характеристика IК = f (n) дает при iВ = const перегиб, спускаясь при n = 0 к значению IК = 0, как это показано на рис. 11- 4.

Нагрузочные характеристики

Нагрузочные характеристики дают зависимость:

Наибольшее практическое значение имеет нагрузочная характеристика при cos φ ≈ 0 и φ ≈ π/2 > 0 (рис. 11-5).

Нагрузочные характеристики при cos φ = 0,8 (φ >0) и cos φ =1 проходят выше характеристики cos φ = 0 и не являются параллельными по отношению к характеристике холостого хода E0 = f(iB). Характеристики при cos φ = 0,8 и cos φ = 0, но при опережающем токе (φ <0) проходят выше характеристики холостого хода.

Внешняя характеристика определяет зависимость U = f (I) при if = const, cos φ = const, f = fН и показывает, как изменяется напряжение машины U при изменении величины нагрузки и неизменном токе возбуждения.

Вид внешних характеристик при разных характерах нагрузки показан на рис. 33-10, причем предполагается, что в каждом случае величина тока возбуждения отрегулирована так, что при I = IН также U = UH. Отметим, что величина if при номинальной нагрузке (U = UH, I = IH, cos φ = cos φн, f = fH) называется номинальным током возбуждения.

Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе (кривая 1 на рис. 33-10) существует значительная продольная размагничивающая реакция якоря, которая растет с увеличением тока нагрузки I, и поэтому U с увеличением I уменьшается. При чисто активной нагрузке (кривая 2 на рис. 33-10) также имеется продольная размагничивающая реакция якоря, но угол ψ между Е и I меньше, чем в предыдущем случае, поэтому продольная размагничивающая реакция якоря слабее и уменьшение U с увеличением I происходит медленнее. При опережающем токе (кривая 3 на рис. 33-10) возникает продольная намагничивающая реакция якоря, и поэтому с увеличением I напряжение U растет. Следует отметить, что значения if для трех характеристик 33-10 различны и наибольшее if соответствует характеристике 1.

Номинальное изменение напряжения синхронного генератора ΔUН — это изменение напряжения на зажимах генератора (при его работе отдельно от других генераторов) при изменении нагрузки от номинального значения до нуля и при неизменном токе возбуждения.

Синхронные генераторы обычно рассчитываются для работы с номинальной нагрузкой при отстающем токе и cos φ = 0,8. Согласно кривой 1 на рис. 33-10, при этом ΔUН>0. Величина ΔUН обычно

Регулировочная характеристика определяет зависимость if = f (I) при U = const, cosφ = const и f = const и показывает, как нужно регулировать ток возбуждения синхронного генератора, чтобы при изменении нагрузки его напряжение оставалось неизменным. Ввиду изменения внутреннего падения напряжения в РТ одновременно с регулировкой if приходится также несколько регулировать напряжение РТ, чтобы поддержать U = const. Вид регулировочных характеристик показан на рис. 33-11.

ЭЛЕМЕНТЫ ТЕОРИИ ПЕРЕХОДНЫХ ПРОЦЕССОВ

СИНХРОННЫХ МАШИН

Общая характеристика проблемы изучения переходных процессов

синхронных машин

При резких изменениях режима работы синхронной машины (наброс и сброс нагрузки, замыкание и размыкание электрических цепей обмоток, короткие замыкания в этих цепях и т. д.) возникают разнообразные переходные процессы. В современных энергетических системах работает совместно большое количество синхронных машин, причем мощности отдельных машин достигают 1,5 млн. кВт. Переходные процессы, возникающие в одной машине, могут оказать большое влияние на работу других машин и всей энергосистемы в целом, поскольку в этих машинах также возникают различные переходные процессы. Интенсивные переходные процессы нарушают работу энергосистемы в целом и могут вызвать серьезные аварии. Подобные аварии связаны с большими убытками, так как при них возможны повреждения дорогостоящего оборудования. Однако наибольшие убытки получаются в результате нарушения энергоснабжения крупных промышленных районов, когда недовырабатывается промышленная продукция.

По указанным причинам изучение переходных процессов синхронных машин имеет весьма большое практическое значение, так как позволяет правильно понимать эти процессы, предвидеть характер возможных аварий, принимать меры к предотвращению или ограничению действия аварий и быстрейшему устранению их последствий.

Следует отметить, что переходные процессы синхронных машин протекают весьма быстро, в течение нескольких секунд и даже долей секунды. Поэтому целенаправленные и согласованные действия эксплуатационного персонала энергетических систем в начальный и вместе с тем решающий период возникновения аварии невозможны. В связи с этим необходимо применять многочисленные и разнообразные средства автоматического управления и регулирования, чтобы воздействовать на возникшие переходные процессы в нужных направлениях.

Переходные процессы любого характера описываются дифференциальными уравнениями. Синхронные машины, как указывалось выше, имеют магнитную и электрическую несимметрию. Кроме того, обмотки якоря и индуктора связаны индуктивно и перемещаются относительно друг друга, а скорость вращения ротора в переходных режимах в общем случае непостоянна. В связи с этим дифференциальные уравнения синхронной машины имеют сложный вид. Кроме того, при совместной работе синхронных машин в энергетической системе необходимо учитывать их взаимное влияние друг на друга и ряд других факторов. По этим причинам строгая математическая теория переходных процессов синхронных машин весьма сложна.

Наиболее часто интенсивные переходные процессы в энергетических системах и синхронных машинах вызываются короткими замыканиями в электрических сетях и линиях электропередачи. Такие замыкания возникают по разным причинам (повреждение и пробой изоляции, атмосферные перенапряжения, замыкание проводов птицами, падение опор линий передачи, обрыв проводов и т. д.).

Короткие замыкания, которые возникают при нахождении сетей, линий передач и электрических машин под напряжением и развиваются весьма быстро, называются внезапными. Появляющиеся при этом переходные процессы во многих случаях весьма опасны. Кроме того, явления, возникающие при внезапных коротких замыканиях, во многих отношениях характерны и для других видов переходных процессов. Поэтому изучение процесса внезапного короткого замыкания занимает в теории переходных процессов синхронной машины одно из центральных мест.

Гашение магнитного поля и переходные процессы в цепях индуктора

Способы гашения поля. При внутренних коротких замыканиях в обмотке якоря синхронного генератора или на его выводах, до выключателя (рис. 34-1), автоматическая релейная защита с помощью выключателя отключает генератор от сети. Но короткое замыкание внутри генератора этим не устраняется, ток возбуждения if продолжает индуктировать э. д. с. в обмотке якоря, и в ней продолжают течь большие токи короткого замыкания, которые вызывают сначала расплавление меди обмотки якоря в месте короткого замыкания, а затем также расплавление стали сердечника якоря. Поэтому во избежание больших повреждений генератора необходимо быстро довести ток возбуждения и поток генератора до нуля. Такая операция называется гашением магнитного поля.

Гашение поля возможно путем разрыва цепи возбуждения генератора с помощью, например, контактов 8 (рис. 34-1, а). Однако это недопустимо, так как при этом, во-первых, вследствие чрезвычайно быстрого уменьшения магнитного потока в обмотках генератора индуктируются весьма большие э. д. с. способные вызвать пробой изоляции. В особенности это относится к самой обмотке возбуждения и к ее контактным кольцам, так как номинальное напряжение цепи возбуждения относительно мало (50—1000 В). Во-вторых, магнитное поле генератора содержит значительную энергию, которая при разрыве цепи возбуждения гасится в дуге выключателя между контактами 8, в результате чего этот выключатель может быстро прийти в негодность.

Разрыв цепи возбуждения возбудителя также недопустим в отношении возникающих при этом перенапряжений в обмотке возбуждения возбудителя. Кроме того, он не дает желательных результатов, так как обмотка возбуждения генератора 2 оказывается замкнутой через якорь возбудителя 6 и ввиду большой индуктивности и небольшого активного сопротивления этой цепи ток if будет затухать медленно, с постоянной времени 2—10 сек. При этих условиях размеры повреждения генератора при внутренних коротких замыканиях оказываются большими.

В связи с изложенным проблему гашения поля приходится решать компромиссным образом — путем уменьшения тока if с такой скоростью, чтобы возникающие перенапряжения были в допустимых пределах, а внутренние повреждения генератора были минимальны. Для этой цели разработаны соответствующие схемы и аппараты гашения поля.

Одна из широко применяемых схем гашения поля изображена на рис. 34-1, а. В этой схеме при нормальной работе контакты 8 замкнуты, а контакты 9 разомкнуты. При коротком замыкании внутри генератора релейная защита подает команду на замыкание контактов 9 и отключение контактов 8. Цепь обмотки 2 остается замкнутой через сопротивление 7 гашения поля rг, величина которого обычно в 3—5 раз больше сопротивления rf самой обмотки 2. При этом ток if затухает с определенной скоростью, которая тем меньше, чем больше rг. Контакты 8 и в данном случае работают в довольно тяжелых условиях, так как на них возникает сильная дуга.

В последние годы ОАО «Электросила» применяет также схему рис. 34-1, б, в которой сопротивление гашения поля отсутствует, а дуга в результате действия электродинамических сил выдувается с контактов 11 на решетку 12 и гасится в ней.

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ МАШИН

Включение синхронных генераторов на параллельную работу

На каждой электрической станции обычно бывает установлено несколько генераторов, которые включаются на параллельную работу в общую сеть. В современных энергосистемах на общую сеть, кроме того, работает целый ряд электростанций, и поэтому параллельно на общую сеть работает большое число синхронных генераторов. Благодаря этому достигается большая надежность энергоснабжения потребителей, снижение мощности аварийного и ремонтного резерва, возможность маневрирования энергоресурсами сезонного характера и другие выгоды.

Все параллельно работающие генераторы должны отдавать в сеть ток одинаковой частоты. Поэтому они должны вращаться строго в такт или, как говорят, синхронно, т. е. их скорости вращения п1, п2, п3 … должны быть в точности обратно пропорциональны числам пар полюсов:

В частности, скорости вращения генераторов с одинаковыми числами полюсов должны быть в точности одинаковыми.

Условия синхронизации генераторов.

При включении генераторов на параллельную работу с другими генераторами необходимо избегать чрезмерно большого толчка тока и возникновения ударных электромагнитных моментов и сил, способных вызвать повреждение генератора и другого оборудования, а также нарушить работу электрической сети или энергосистемы.

Поэтому необходимо отрегулировать надлежащим образом режим работы генератора на холостом ходу перед его включением на параллельную работу и в надлежащий момент времени включить генератор в сеть. Совокупность этих операций называется синхронизацией генератора.

Идеальные условия для включения генератора на параллельную работу достигаются при соблюдении следующих требований:

1) напряжение включаемого генератора UГ должно быть равно напряжению сети UС или уже работающего генератора;

2) частота генератора fГ должна равняться частоте сети fС;

3) чередование фаз генератора и сети должно быть одинаково;

4) напряжения UГ и UС должны быть в фазе.

При указанных условиях векторы напряжений генератора и сети совпадают и вращаются с одинаковой скоростью, разности напряжений между контактами выключателя при включении генератора (рис. 35-2) равны нулю, и поэтому при включении не возникает никакого толчка тока.

Равенство напряжений достигается путем регулирования тока возбуждения генератора и контролируется с помощью вольтметра. Изменение частоты и фазы напряжения генератора достигается изменением скорости вращения генератора. Правильность чередования фаз необходимо проверять только при первом включении генератора после монтажа или сборки схемы. Совпадение напряжений по фазе контролируется с помощью ламп, нулевых вольтметров или специальных синхроноскопов, а в автоматических синхронизаторах — с помощью специальных измерительных элементов.

Неправильная синхронизация может вызвать серьезную аварию. Действительно, если, например, напряжения UГ и UC будут в момент включения генератора на параллельную работу сдвинуты по фазе на 180°, то это эквивалентно короткому замыканию при удвоенном напряжении. Если генератор включается в сеть мощной энергетической системы, то сопротивление этой сети по сравнению с сопротивлением самого генератора можно принять равным нулю, и поэтому ударный ток при включении может превысить ток при обычном коротком замыкании в два раза. Ударные электромагнитные моменты и силы при этом возрастают в четыре раза.

Синхронизация с помощью лампового синхроноскопа может осуществляться по схеме на погасание или на вращение света.

Схема синхронизации на погасание света представлена на рис. 35-2, а, где слева изображен генератор Г1, уже работающий на шины станции и сеть, а справа — включаемый на параллельную работу генератор Г2 с вольтметром V, вольтметровым переключателем П и с ламповым синхроноскопом С, каждая из ламп 1, 2, 3 которого включена между контактами одной и той же фазы или полюса выключателя В2. При соблюдении приведенных выше условий напряжения на всех лампах одновременно равны нулю и лампы не светятся, что и указывает на возможность включения генератора Г2 с помощью выключателя В2 на параллельную работу.

Достичь точного равенства частот fГ = fС в течение даже небольшого промежутка времени практически невозможно (рис. 35-3, а), и поэтому напряжения UГUС на лампах 1, 2, 3 (рис. 35-2, а) пульсируют с частотой fГ fС (рис. 35-3), и если эта частота мала, то лампы загораются и погасают с такой же частотой. Частота fГ fС соответствует частоте пульсаций напряжения (штриховые кривые на рис. 35-3, б). Путем регулирования частоты генератора необходимо добиться того, чтобы частота загорания и погасания ламп была минимальна (период 3—5 сек), и произвести затем включение выключателя В2 в момент времени, когда лампы не горят.

При малой частоте лампы погасают раньше, чем напряжение достигнет нуля, и загораются также при U > 0. Поэтому при схеме рис. 35-2, а трудно выбрать правильный момент включения. В этом отношении лучшей является схема рис. 35-2, б, в которой лампа 1 включена так же, как на схеме рис. 35-2, а, а лампы 2 и 3 — между различными фазами генератора и сети. Поэтому в данном случае при соблюдении перечисленных выше условий лампа 1 не светится, а лампы 2 и 3 находятся под линейным напряжением и светятся с одинаковой яркостью, что и является критерием правильности момента включения.

При fГ – fС0 лампы 1, 2 и 3 (рис. 35-2, б) загораются и погасают поочередно, и создается впечатление вращающегося света, причем при fГ > fС вращение происходит в одну сторону, а при fГ < при fС — в другую. Частота вращения света равна при fГfС, и необходимо добиться, чтобы она была минимальна (период 3—5 сек).

Отметим, что если при осуществлении схемы рис. 35-2, а вместо одновременного погасания и загорания всех трех ламп получится вращение света, а при схеме рис. 35-2, б — одновременное погасание и загорание ламп, то это будет указывать на неправильность чередования фаз генератора и сети. При этом необходимо поменять местами начала двух фаз обмотки статора генератора.

Для более точного выбора момента включения параллельно одной из ламп рис. 35-2, а включают вольтметр, имеющий растянутую шкалу в области нуля (нулевой вольтметр).

Другие методы синхронизации. Синхронизация с помощью ламп и нулевого вольтметра применяется только для генераторов малой мощности. Для мощных генераторов пользуются электромагнитным синхроноскопом, к которому подаются напряжения генератора и сети. Этот прибор работает на принципе вращающегося магнитного поля, и при fГ ≠ fС его стрелка вращается с частотой fГ fС в ту или иную сторону в зависимости от того, какая частота больше. При правильном моменте включения стрелка синхроноскопа обращена вертикально вверх.

При высоком напряжении приборы синхронизации включаются через трансформаторы напряжения. При этом необходимо позаботиться о том, чтобы фазировка (чередование фаз) этих трансформаторов была правильной.

Синхронизация генераторов является весьма ответственной операцией и требует от эксплуатационного персонала большого внимания. В особенности это важно в случае различных аварий, когда персонал работает в напряженной обстановке. В то же время именно при авариях необходима максимальная оперативность в производстве различных переключений и в синхронизации резервных или отключившихся во время аварий генераторов. Опыт показывает, что наибольшее количество ошибочных действий персонала падает как раз на период аварий.

Для исключения ошибок персонала и облегчения его работы пользуются автоматическими синхронизаторами, которые осуществляют автоматическое регулирование UГ и fГ синхронизируемых генераторов в нужных направлениях и при достижении необходимых условий автоматически включают генераторы на параллельную работу. Однако подобные автоматические синхронизаторы также обладают недостатками (сложность, необходимость непрерывного и квалифицированного обслуживания и т. д.). К тому же во время аварий напряжение и частота в системе нередко беспрерывно и быстро меняются и поэтому процесс синхронизации с помощью автоматических синхронизаторов сильно затягивается (до 5—10 мин и даже более), что с точки зрения ликвидации аварии крайне нежелательно.

Вследствие сказанного в последние годы широко внедрен метод грубой синхронизации, или самосинхронизации.

Сущность метода само синхронизации заключается в том, что генератор включается в сеть в невозбужденном состоянии (UГ = 0) при скорости вращения, близкой к синхронной (допускается отклонение до 2%). При этом отпадает необходимость в точном выравнивании частот, величины и фазы напряжений, благодаря чему процесс синхронизации предельно упрощается и возможность ошибочных действий исключается. После включения невозбужденного генератора в сеть немедленно включается ток возбуждения и генератор втягивается в синхронизм (т. е. его скорость достигает синхронной и становится fГ = fС).

При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением UС эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с Е = UC.

Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.). Кроме того, включение генератора производится при включенном сопротивлении гашения поля, что также снижает величину ударного тока и способствует быстрому затуханию переходных токов.

По действующим правилам метод самосинхронизации можно применять в случаях, когда толчок тока не будет превышать 3,5 IH. В большинстве случаев это условие выполняется. На рис. 35-4 представлены кривые, относящиеся к включению в сеть методом самосинхронизации турбогенератора мощностью 100 МВт.

Синхронные режимы параллельной работы синхронных машин

Режим работы синхронной машины параллельно с сетью при синхронной скорости вращения называется синхронным.

Изменение реактивной мощности. Режим синхронного компенсатора. Предположим, что при включении на параллельную работу изложенные условия синхронизации возбужденного генератора были соблюдены в точности, т. е. машина не примет на себя никакой нагрузки.

Таким образом, изменение тока возбуждения синхронной машины вызовет в ней только реактивные токи или изменение реактивного тока и реактивной мощности. При Е > U синхронная машина называется перевозбужденной, а при Е < U недовозбужденной. При равенстве активной мощности нулю перевозбужденная синхронная машина по отношению к сети эквивалентна емкости, а недовозбужденная — индуктивности.

Синхронная машина, не несущая активной нагрузки и загруженная реактивным током, называется синхронным компенсатором. Такие компенсаторы применяются для повышения коэффициента мощности и поддержания нормального уровня напряжения в сетях.

Если, например, такой компенсатор установить в районе большой промышленной нагрузки и перевозбудить его, то он будет снабжать асинхронные двигатели промышленных предприятий реактивной мощностью, питающая сеть и генераторы электрических станций будут полностью или частично разгружены от этой мощности, коэффициент мощности генераторов и сети повысится, потери мощности и падения напряжения в них уменьшатся и напряжение сети у потребителей сохранится на нормальном уровне.

Изменение активной мощности. Режимы генератора и двигателя.

Из сказанного выше следует, что изменение тока возбуждения не вызывает появления активной нагрузки или её изменения. Чтобы включенная на параллельную работу машина приняла на себя активную нагрузку и работала в режиме генератора, необходимо увеличить движущий механический вращающий момент на ее валу, увеличив, например, поступление воды или пара в турбину.

Параллельная работа синхронных генераторов на сеть ограниченной мощности.

В ряде случаев мощность отдельного генератора составляет значительную часть мощности всех генераторов системы. В других случаях станция с несколькими генераторами соединена с мощной системой через длинную линию передачи. Хотя в этих условиях установленные выше общие положения также сохраняются в силе, однако при этой изменение режима работы одного генератора оказывает все же заметное влияние на режим работы других генераторов.

Для выяснения особенностей параллельной работы в этих условиях допустим, что параллельно на общую сеть работают два генератора одинаковой мощности, снабжая электроэнергией группу потребителей (см. рис. 35-2). Если, например, увеличить одновременно токи возбуждения if1, if2 этих генераторов, то напряжение U обоих генераторов и всей сети возрастет. При увеличении U в общем случае возрастет также реактивная мощность потребителей, например асинхронных двигателей. При if1 = if2 эта мощность распределится поровну между обоими генераторами.

Если увеличить только if1 то U также возрастет, но в меньшей степени. В то же время реактивная мощность генератора Г1 увеличится, а генератора Г2 — уменьшится. При увеличении if1 для сохранения U = const ток if2 другого генератора нужно уменьшить. При этом реактивная мощность генератора Г1 возрастет, а генератора Г2 — уменьшится.

Таким образом, в системе ограниченной мощности для повышения напряжения сети необходимо увеличивать токи возбуждения всех генераторов, а для перераспределения общей реактивной мощности между отдельными генераторами при U = const нужно токи возбуждения одних генераторов увеличивать, а других — уменьшать.

Если увеличить вращающие моменты или мощности первичных двигателей всех генераторов в системе ограниченной мощности, то скорость вращения этих двигателей и частота сети будут возрастать. При этом повысится также мощность потребителей, например, в результате повышения скорости вращения асинхронных двигателей. Повышение частоты будет происходить до тех пор, пока не наступит баланс мощностей между первичными двигателями и потребителями с учетом потерь в генераторах и сети. Для сохранения f = const при увеличении мощности первичного двигателя одного генератора мощность первичного двигателя второго нужно уменьшить. При этом происходит перераспределение активных мощностей.

При недостатке генерируемой активной мощности в системе частота f будет падать, что нарушит нормальное энергоснабжение потребителей. При недостатке генерируемой реактивной мощности в системе (невозможность поддерживать на необходимом уровне реактивную мощность генераторов электростанций и синхронных компенсаторов во избежание перегрузки их током) напряжение системы будет падать, при определенных условиях даже катастрофически (так называемая лавина напряжения). Поэтому сохранение баланса реактивных мощностей в системе не менее важно, чем сохранение баланса активных мощностей.

СИНХРОННЫЕ ДВИГАТЕЛИ И КОМПЕНСАТОРЫ

Синхронные двигатели. Применение синхронных двигателей.

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cos φ = 1 и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U2.

Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором. Пуск и регулирование скорости вращения синхронных двигателей также сложнее.

Тем не менее, преимущество синхронных двигателей настолько велико, что при РН > 200 ÷ 300 кВт их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.). Синхронные двигатели с cos φН = 1 по своей стоимости и потерям энергии всегда имеют преимущество перед асинхронными двигателями, снабженными конденсаторными батареями для компенсации коэффициента мощности до cos φ = 1. При РН > 300 кВт выгодно использовать синхронные двигатели с cos φН = 0,9 (перевозбуждение) и при РН > 1000 кВm — с cos φН = 0,8.

Применение синхронных двигателей беспрерывно расширяется, и они строятся на мощности до РН = 50 000 кВт.

Способы пуска синхронных двигателей

Синхронный двигатель не имеет начального пускового момента. Если его подключить к сети переменного тока когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять своё направление, т.е. средний момент за период будет равен нулю. При этих условиях двигатель не сможет прийти во вращение, так как ротор его, обладающий определённой инерцией, не может быть в течение одного полупериода разогнан до синхронной частоты вращения. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. В подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей. При этом методе двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой обмоткой, выполненной по типу беличьей клетки. Обычно эту клетку выполняют из латуни с целью увеличения сопротивления стержней. При включении трёхфазной обмотки якоря в сеть образуется вращающееся магнитное поле, которое, взаимодействуя с током IП в пусковой обмотке, создаёт электромагнитные силы F и увлекает за собой ротор. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создаёт синхронизирующий момент, который втягивает ротор в синхронизм.

Обычно синхронные двигатели имеют на своем валу возбудитель в виде генератора постоянного тока параллельного возбуждения (рис. 37-1). При пуске по схеме рис. 37-1, а контакты 7 разомкнуты, а контакт 8 замкнут. При этом обмотка возбуждения двигателя 2 замкнута через сопротивление 6 и асинхронный пуск происходит в наиболее благоприятных условиях. В конце асинхронного пуска, при s ≈ 0,05, срабатывает частотное реле, обмотка которого (на рис. 37-1, а не показана) подключена к сопротивлению 6, и включает контактор цепи возбуждения. Контакты 7 контактора при этом замыкаются, а контакт 8 размыкается. В результате в обмотку 2 подается ток возбуждения и двигатель втягивается в синхронизм. Пуск по схеме рис, 37-1, а отличается определенной сложностью. Поэтому в последнее время все чаще применяется схема рис. 37-1, б с наглухо присоединенным возбудителем. При этом по цепи якоря 3 при пуске протекает переменный ток, который, однако, не причиняет вреда. При п = (0,6 ÷ 0,7) пН возбудитель возбуждается и возбуждает синхронный двигатель, благодаря чему при приближении к синхронной скорости двигатель втягивается в синхронизм.

Пуск по схеме рис. 37-1, б происходит в менее благоприятных условиях. Во-первых, двигатель возбуждается слишком рано и при этом возникает дополнительный тормозящий момент на валу МК. Во-вторых, в данном случае по сравнению со схемой рис. 37-1, а кривая асинхронного момента имеет менее благоприятный вид. Тем не менее, схема рис. 37-1, б обеспечивает надежное втягивание двигателя в синхронизм, если момент нагрузки на валу МСТ при п ≈ пН не превышает (0,4 ÷ 0,5) МН. Путем совершенствования пусковой обмотки двигателя можно достичь надежного втягивания в синхронизм при МСТ = МН. Пуск по схеме рис, 37-1, б по своей простоте приближается к пуску короткозамкнутого асинхронного двигателя и поэтому находит в последние годы все более широкое применение.

Обычно производится прямой асинхронный пуск синхронных двигателей путем включения на полное напряжение сети. При тяжелых условиях пуска (большие падения напряжения в сети и опасность перегрева пусковой обмотки или массивного ротора) производится реакторный или автотрансформаторный пуск при пониженном напряжении, как и у короткозамкнутых асинхронных двигателей.

Рабочие характеристики синхронного двигателя мощностью РН = 560 кВт при U = UH, f = fH и if = ifH = const изображены в относительных единицах на рис. 37-4. Двигатель работает с перевозбуждением, его cos φ с уменьшением полезной мощности Р2 также уменьшается, а отдаваемая в сеть реактивная мощность Q увеличивается. Отсюда следует, что перевозбужденные недогруженные синхронные двигатели в отличие от асинхронных способствуют улучшению коэффициента мощности сети.

Синхронные компенсаторы

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным является перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу. Поэтому синхронные компенсаторы загружены также небольшим активным током и потребляют из сети активную мощность для покрытия своих потерь. Компенсаторы строятся на мощность до SH = 100 000 кВ*А и имеют явнополюсную конструкцию, обычно с 2р = 6 или 8. Мощные компенсаторы имеют водородное охлаждение.

Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска. В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метол самосинхронизации.

Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели. Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.

Номинальная полная мощность синхронного компенсатора

соответствует его работе с перевозбуждением. Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме с if = 0 и E = 0.

В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.

0

Автор публикации

не в сети 1 неделя

apriori

0
Комментарии: 0Публикации: 201Регистрация: 18-01-2019

Добавить комментарий