Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Псковский государственный политехнический институт

Электромеханический факультет

Кафедра

«Электропривод и системы автоматизации»

А.М. Марков

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

(Часть I)

Учебное пособие для студентов высшего профессионального образования

специальности 140604 очно-заочной (вечерней) формы обучения

Псков

2005

УДК 621.313 (075.8) «Электрические машины» (Часть I)

Рекомендовано к изданию Учебно-методическим советом

Псковского государственного политехнического института

Рецензенты:

– Сычёв В.А., к.т.н., доцент, генеральный директор

ООО Субконтрактинговый Центр «Северо-Запад».

– Родионов Ю.А., к.т.н., доцент, директор ООО «Экотех».

– Григорьев О.И., к.т.н., доцент кафедры «Электроэнергетика», ППИ.

Марков А.М. «Электрические машины» (Часть I). Учебное пособие. Для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов. – Псков, 2005. – 73 с.

В учебном пособии «Электрические машины» (Часть I) рассмотрены основы теории электрических машин постоянного тока и трансформаторов. Приведены основные конструкции и характеристики электрических машин, режимы их работы, условия выбора и эксплуатации.

Учебное пособие предназначено для студентов 4-го курса специальности 140604 – Электропривод и автоматика промышленных установок и технологических комплексов, а также для студентов других специальностей и специалистов, интересующихся вопросами расчёта и эксплуатации электрических машин.

© Псковский государственный политехнический институт, 2005.

© Марков А.М., 2005.

Электрические машины и их значение

Электрические машины служат для преобразования механической энергии в электрическую и обратно — электрической энергии в механическую, а также для преобразования одного рода электрической энергии в другой.

Преобразование механической энергии в электрическую осуществляется с помощью электрических машин, называемых электрическими генераторами. Генераторы приводятся во вращение с помощью паровых, гидравлических и газовых турбин, двигателей внутреннего сгорания и других первичных двигателей.

Во многих случаях электрическая энергия, выработанная на электрических станциях, снова превращается в механическую для приведения в действие различных машин и механизмов. Для этой цели применяются электрические машины, называемые электрическими двигателями.

На современных электростанциях обычно вырабатывается переменный ток и для передачи его к потребителям через линии электропередачи и электрические сети необходимо изменять напряжение тока. Такое изменение, или трансформация, переменного тока осуществляется с помощью преобразователей, которые называются трансформаторами. Трансформаторы представляют собой статические электромагнитные аппараты, не имеющие вращающихся частей. Однако в принципе их действия и устройства есть много общего с вращающимися электрическими машинами, и поэтому их также относят к электрическим машинам в широком смысле этого слова. Существуют также другие разновидности электрических машин.

В зависимости от рода тока электрические машины подразделяются на машины постоянного и переменного тока. Электрические машины изготовляются на очень широкие пределы мощностей — от долей ватта до миллиона киловатт и выше.

Общие сведения об электрических машинах

Преобразование энергии в современных электрических машинах осуществляется посредством магнитного поля. Такие машины называются индуктивными. Возможно также создание электрических машин, в которых энергия преобразуется посредством электрического поля (емкостные машины), однако такие машины существенного практического распространения не имеют.

В обоих классах машин взаимодействие между отдельными частями машины и преобразование энергии происходят через поле, существующее в среде, которая заполняет пространство между взаимодействующими частями машины. Этой средой обычно является воздух или другое вещество с подобными же магнитными и электрическими свойствами. Однако при практически достижимых интенсивностях магнитного и электрического полей количество энергии в единице объема такой среды будет при магнитном поле в тысячи раз больше, чем при электрическом. Поэтому при одинаковых внешних размерах или габаритах машин обоих классов индуктивные машины будут развивать значительно большую мощность.

Для получения по возможности более сильных магнитных полей применяются ферромагнитные сердечники, которые являются неотъемлемыми частями каждой электрической машины. При переменных магнитных полях сердечники с целью ослабления вихревых токов и уменьшения вызываемых ими потерь энергии изготовляются из листовой электротехнической стали. Другими неотъемлемыми частями электрической машины являются обмотки из проводниковых материалов, по которым протекают электрические токи. Для электрической изоляции обмоток применяются различные электроизоляционные материалы.

Электрические машины обладают свойством обратимости: каждый электрический генератор может работать в качестве двигателя и наоборот, а в каждом трансформаторе и электромашинном преобразователе электрической энергии направление преобразования энергии может быть изменено на обратное. Однако каждая выпускаемая электромашиностроительным заводом вращающаяся машина обычно предназначается для одного, определенного режима работы, например в качестве генератора или двигателя. Точно так же в трансформаторах одна из обмоток предусматривается для работы в качестве приемника электрической энергии (первичная обмотка), а другая (вторичная обмотка) —для отдачи энергии. При этом оказывается возможным наилучшим образом приспособить машину для заданных условий работы и добиться наилучшего использования материалов, т. е. получить наибольшую мощность на единицу веса машины.

Преобразование энергии в электрических машинах неизбежно связано с ее потерями, вызванными перемагничиванием ферромагнитных сердечников, прохождением тока через проводники, трением в подшипниках и о воздух и т. д. Поэтому потребляемая электрической машиной мощность всегда больше отдаваемой, или полезной, мощности, а коэффициент полезного действия (к.п.д.) меньше 100%. Тем не менее электрические машины по сравнению с тепловыми и некоторыми другими типами машин являются весьма совершенными преобразователями энергии с относительно высокими коэффициентами полезного действия. Так, в самых мощных электрических машинах к.п.д. равен 98—99,5%, а в машинах мощностью 10 Вт к.п.д. составляет 20—40%. Такие величины к.п.д. при столь малых мощностях во многих других типах машин недостижимы.

Высокие энергетические показатели электрических машин, удобство подвода и отвода энергии, возможность выполнения на самые разнообразные мощности, скорости вращения, а также удобство обслуживания и простота управления обусловили повсеместное их широкое распространение.

Теряемая в электрических машинах энергия превращается в тепло и вызывает нагревание отдельных их частей. Для надежности работы и достижения приемлемого срока службы нагревание частей машины должно быть ограничено. Наиболее чувствительными в отношении нагревания являются электроизоляционные материалы, и именно их качеством определяются допустимые уровни нагревания электрических машин. Большое значение имеет также создание хороших условий отвода тепла и охлаждения электрических машин.

Потери энергии в электрической машине увеличиваются с повышением ее нагрузки, а вместе с этим увеличивается и нагревание машины. Поэтому наибольшая мощность нагрузки, допускаемая для данной машины, определяется главным образом допустимым уровнем ее нагревания, а также механической прочностью отдельных частей машины, условиями токосъема на скользящих контактах и т.д.

Полезная мощность, на которую рассчитана электрическая машина, называется номинальной. Все другие величины, которые характеризуют работу машины при этой мощности, также называются номинальными. К ним относятся: номинальные напряжение, ток, скорость вращения, к.п.д., и другие величины, а для машины переменного тока также номинальная частота и номинальный коэффициент мощности (cos φ).

Основные поминальные величины указываются в паспортной табличке (на щитке), прикрепленной к машине. Принято, что для двигателя номинальная мощность является полезной мощностью на его валу, а для генератора — электрической мощностью, отдаваемой с его выходных зажимов.

В России, а также в большинстве других стран мира промышленная частота тока равна 50 Гц, и большинство машин переменного тока поэтому также строится на 50 Гц. В США и других странах Америки промышленная частота тока равна 60 Гц. Для разных специальных назначений (электротермические установки, устройства автоматики и т. д.) применяются также электрические машины с другими значениями частоты тока.

По мощности электрические машины можно подразделять на следующие группы: до 0,5 кВт — машины весьма малой мощности, или микромашины, 0,5—20 кВт — машины малой мощности, 20— 250 кВm — машины средней мощности и более 250 кВт — машины большой мощности.

Материалы, применяемые в электрических машинах

Классификация материалов. Материалы, применяемые в электрических машинах, подразделяются на три категорий: конструктивные, активные и изоляционные.

Конструктивные материалы применяются для изготовления таких деталей и частей машины, главным назначением которых является восприятие и передача механических нагрузок (валы, станины, подшипниковые щиты и стояки, различные крепежные детали и т. д.). В качестве конструктивных материалов в электрических машинах используются сталь, чугун, цветные металлы и их сплавы, пластмассы.

Активные материалы подразделяются на проводниковые и магнитные и предназначаются для изготовления активных частей машины (обмотки и сердечники магнитопроводов).

Изоляционные материалы применяются для электрической изоляции обмоток и других токоведущих частей, а также для изоляции листов электротехнической стали друг от друга в расслоенных магнитных сердечниках.

Отдельную группу составляют материалы, из которых изготовляются электрические щетки, применяемые для отвода тока с подвижных частей электрических машин.

Проводниковые материалы. Благодаря хорошей электропроводности и относительной дешевизне в качестве проводниковых материалов в электрических машинах широко применяется электролитическая медь, а в последнее время также рафинированный алюминий. В ряде случаев обмотки электрических машин изготовляются из медных и алюминиевых сплавов, свойства которых изменяются в широких пределах в зависимости от их состава. Медные сплавы используются также для изготовления вспомогательных токоведущих частей (контактные кольца, болты и т. д.).

Магнитные материалы. Для изготовления отдельных частей магнитопроводов электрических машин применяется листовая электротехническая сталь, листовая конструкционная сталь, литая сталь и чугун. Чугун вследствие невысоких магнитных свойств используется относительно редко.

Наиболее важный класс магнитных материалов составляют различные сорта листовой электротехнической стали. Для уменьшения потерь на гистерезис и вихревые токи в ее состав вводят кремний. Наличие примесей углерода, кислорода и азота снижает качество электротехнической стали. Большое влияние на качество электротехнической стали оказывает технология ее изготовления. Обычную листовую электротехническую сталь получают путем горячей прокатки. В последние годы быстро растет применение холоднокатаной текстурованной стали, магнитные свойства которой при намагничивании вдоль направления прокатки значительно выше, чем у обычной стали.

С увеличением содержания кремния возрастает хрупкость стали. В связи с этим, чем меньше машина и, следовательно, чем меньше размеры зубцов и пазов, в которые укладываются обмотки, тем труднее использовать стали с повышенной и высокой степенью легирования. Поэтому, например, высоколегированная сталь применяется только для изготовления трансформаторов и очень мощных генераторов переменного тока.

В машинах с частотой тока до 100 Гц обычно применяется листовая электротехническая сталь толщиной 0,5 мм, а иногда также, в особенности в трансформаторах, сталь толщиной 0,35 мм. При более высоких частотах используется более тонкая сталь.

Потери на вихревые токи зависят от квадрата индукции, а потери на гистерезис—от индукции в степени, близкой к двум. Поэтому и общие потери в стали с достаточной для практических целей точностью можно считать зависящими от квадрата индукции. Потери на вихревые токи пропорциональны квадрату частоты, а па гистерезис — первой степени частоты. При частоте 50 Гц и толщине листов 0,35—0,5 мм потери на гистерезис превышают потери на вихревые токи в несколько раз. Зависимость общих потерь в стали от частоты вследствие этого ближе к первой степени частоты. Для изоляции листов применяется специальный лак или весьма редко тонкая бумага.

При штамповке возникает наклеп листов электротехнической стали. Кроме того, при сборке пакетов сердечников происходит частичное замыкание листов по их кромкам вследствие появления при штамповке грата или заусенцев. Это увеличивает потери в стали до 1,5—4,0 раз.

Из-за наличия между листами стали изоляции, их волнистости и неоднородности по толщине не весь объем спрессованного сердечника заполнен сталью. Коэффициент заполнения пакета сталью при изоляции лаком в среднем составляет кс = 0,93 при толщине листов 0,5 мм и кс = 0,90 при 0,35 мм.

Изоляционные материалы. К электроизоляционным материалам, применяемым в электрических машинах, предъявляются следующие требования: по возможности высокие электрическая прочность, механическая прочность, нагревостойкость и теплопроводность, а также малая гигроскопичность. Важно, чтобы изоляция была по возможности тонкой, так как увеличение толщины изоляции ухудшает теплоотдачу и приводит к уменьшению коэффициента заполнения паза проводниковым материалом, что в свою очередь вызывает уменьшение номинальной мощности машины. В ряде случаев возникают также и другие требования, например устойчивость против различных микроорганизмов в условиях влажного тропического климата и т. д.

Изоляционные материалы могут быть твердые, жидкие и газообразные. Газообразными обычно являются воздух и водород, которые представляют собой по отношению к машине окружающую или охлаждающую среду и одновременно в ряде случаев играют роль электрической изоляции. Жидкие диэлектрики находят применение главным образом в трансформаторостроении в виде специального сорта минерального масла, называемого трансформаторным.

Наибольшее значение в электромашиностроении имеют твердые изоляционные материалы. Их можно разбить па следующие группы: 1) естественные органические волокнистые материалы — хлопчатая бумага, материалы на основе древесной целлюлозы и шелк; 2) неорганические материалы — слюда, стекловолокно, асбест; 3) различные синтетические материалы в виде смол, пленок из листового материала и т. д.; 4) различные эмали, лаки и компаунды на основе природных и синтетических материалов.

В последние годы органические волокнистые изоляционные материалы все больше вытесняются синтетическими материалами.

Эмали применяются для изоляции проводов и в качестве покровной изоляции обмоток. Лаки используются для склейки слоистой изоляции и для пропитки обмоток, а также для нанесения покровного защитного слоя на изоляцию.

Пропитка компаундами служит такой же цели, как и пропитка лаками. Разница заключается только в том, что компаунды не имеют летучих растворителей, а представляют собой весьма консистентную массу, которая при нагревании размягчается, сжижается и способна под давлением проникать в поры изоляции. Ввиду отсутствия растворителей заполнение пор при компаундировании получается более плотным.

Важнейшей характеристикой изоляционных материалов является их нагревостойкость, которая решающим образом влияет на надежность работы и срок службы электрических машин. По нагревостойкости электроизоляционные материалы, применяемые в электрических машинах и аппаратах, подразделяются, на семь классов со следующими предельно допустимыми температурами υмакс:

К классу Y относятся не пропитанные жидкими диэлектриками и не погруженные в них волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, а также ряд синтетических полимеров (полиэтилен, полистирол, поливинилхлорид и др.). Этот класс изоляции в электрических машинах применяется редко.

Класс А включает в себя волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, пропитанные жидкими электроизоляционными материалами или погруженные в них изоляцию эмальпроводов на основе масляных и полиамиднорезольных лаков (капрон), полиамидные пленки, бутилкаучуковые и другие материалы, а также пропитанное дерево и древесные слоистые пластики. Пропитывающими веществами для данного класса изоляции являются трансформаторное масло, масляные и асфальтовые лаки и другие вещества с соответствующей нагревостойкостью. К данному классу относятся различные лакоткани, ленты, электротехнический, картон, гетинакс, текстолит и другие изоляционные изделия. Изоляция класса А широко применяется для вращающихся электрических машин мощностью до 100 кВт и выше, а также в трансформаторостроении.

К классу Е относится изоляция эмальпроводов и электрическая изоляция на основе поливинилацеталевых (винифлекс, металвин), полиуретановых, эпоксидных, полиэфирных (лавсан) смол и других синтетических материалов с аналогичной нагревостойкостью. Класс изоляции Е включает в себя новые синтетические материалы, применение которых быстро расширяется в машинах малой и средней мощности (до 100 кВт и выше).

Класс В объединяет изоляционные материалы на основе неорганических диэлектриков (слюда, асбест, стекловолокно) и клеящих, пропиточных и покровных лаков и смол повышенной нагревостойкости органического происхождения, причем содержание органических веществ по весу не должно превышать 50%. Сюда относятся прежде всего материалы на основе тонкой щипаной слюды (микалента, микафолий, миканит), широко применяемые в электромашиностроении.

В последнее время используются также слюдинитовые материалы, в основе которых лежит непрерывная слюдяная лента из пластинок слюды размерами до нескольких миллиметров и толщиной в несколько микрон.

К классу В принадлежат также различные синтетические материалы: полиэфирные смолы на основе фталевого ангидрида, полихлортрифторэтилен(фгоропласт-3), некоторые полиуретановые смолы, пластмассы с неорганическим заполнителем и др. Изоляция класса В широко используется в электрических машинах средней и большой мощности.

Класс F включает в себя материалы на основе слюды, асбеста и стекловолокна, но с применением органических лаков и смол, модифицированных кремнийорганическими (полиорганосилоксановыми) и другими смолами с высокой нагревостойкостью, или же с применением других синтетических смол соответствующей нагревостойкогги (полиэфирные смолы на основе изо- и терефталевой кислот и др.). Изоляция этого класса не должна содержать хлопчатой бумаги, целлюлозы и шелка.

К классу Н относится изоляция на основе слюды, стекловолокна и асбеста в сочетании с кремнийорганическими (полиорганосилоксановыми), полиорганометаллосилоксановыми и другими нагревостойкими смолами. С применением таких смол изготовляются миканиты и слюдиниты, а также стекломиканиты, стекломикафолий, стекломикаленты, стеклослюдиниты, стеклолакоткани и стеклотекстолиты.

К классу Н относится и изоляция на основе политетрафторэтилена (фторопласт-4). Материалы класса Н применяются в электрических машинах, работающих в весьма тяжелых условиях (горная и металлургическая промышленность, транспортные установки и пр.).

К классу изоляции С принадлежат слюда, кварц, стекловолокно, стекло, фарфор и другие керамические материалы, применяемые без органических связующих или с неорганическими связующими.

Под воздействием тепла, вибраций и других физико-химических факторов происходит старение изоляции, т. е. постепенная потеря ею механической прочности и изолирующих свойств. Опытным путем установлено, что срок службы изоляции классов А и В снижается в два раза при повышении температуры на каждые 8—10° С сверх 100° С. Аналогичным образом снижается при повышении температуры также срок службы изоляции других классов.

Электрические щетки подразделяются на две группы: 1) угольно-графитные, графитные и электрографитированные; 2) металлографитные. Для изготовления щеток первой группы используется сажа, измельченные природный графит и антраците каменноугольной смолой в качестве связующего. Заготовки щеток подвергаются обжигу, режим которого определяет структурную форму графита в изделии. При высоких температурах обжига достигается перевод углерода, находящегося в саже и антраците, в форму графита, вследствие чего такой процесс обжига называется графитированием. Щетки второй группы содержат также металлы (медь, бронза, серебро). Наиболее распространены щетки первой группы.

ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО МАШИН ПОСТОЯННОГО ТОКА

Принцип действия машины постоянного тока

Устройство простейшей машины. На рис, 1-1 представлена простейшая машина постоянного тока, а на рис. 1-2 дано схематическое изображение этой машины в осевом направлении. Неподвижная часть машины, называемая индуктором, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор изображенной на рис. 1-1 простейшей машины имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано).

Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря 2 и коллектора 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рис. 1-1 и 1-2 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо скова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Режим генератора. Рассмотрим сначала работу машины в режиме генератора. Предположим, что якорь машины (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с, направление которой может быть определено по правилу правой руки (рис. 1-3, а) и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения. Величина индуктируемой в проводнике обмотки якоря э. д. с.

Где В — величина магнитной индукции в воздушном зазоре между полюсом и якорем в месте расположения проводника; I — активная длина проводника, т. е. та длина, на протяжении которой он расположен в магнитном поле; v — линейная скорость движения проводника.

В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с, которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины

 

Э. д. с. Еа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции В вдоль воздушного зазора (рис. 1-4, а).

Частота э. д. с. в двухполюсной машине равна скорости вращения якоря п, выраженной в оборотах в секунду:

а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью.

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа, В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д.с. (рис. 1-4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рис. 1-1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой — пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными. Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Изменив знак второго полупериода кривой на рис, 1-4, а, получим форму кривой тока и напряжения внешней цепи (рис. 1-4, б). Образуемый во внешней цепи пульсирующий по величине ток малопригоден для практических целей.

Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор (см. гл. 3), Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.

Напряжение постоянного тока на зажимах якоря генератора будет меньше Еа на величину падения напряжения в сопротивлении обмотки якоря rа:

Проводники обмотки якоря с током Iа находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рис. 1-2, а)

направление которых определяется по правилу левой руки (рис. 1-3, б). Эти силы создают механический вращающий момент MЭМ, который называется электромагнитным моментом и на рис. 1-2, а равен

где Da — диаметр якоря. Как видно из рис. 1-2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.

Режим двигателя. Рассматриваемая простейшая машина может работать также двигателем, если к обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fи возникнет электромагнитный момент МЭМ. Величины F и МЭМ, как и для генератора определяются равенствами (1-4) и (1-5). При достаточной величине МЭМ якорь машины придет во вращение и будет развивать механическую мощность. Момент МЭМ при этом является движущим и действует в направлении вращения.

Если мы желаем, чтобы при той же полярности полюсов направления вращения генератора (рис. 1-2, а) и двигателя (рис. 1-2, б) были одинаковы, то направление действия MЭМ, а, следовательно, и направление тока Ia у двигателя должны быть обратными по сравнению с генератором (рис. 1-2, б).

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.

Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Еa, величина которой определяется равенством (1-1). Направление этой э. д. с. в двигателе (рис. 1-2, б) такое же, как и в генераторе (рис. 1-2, а). Таким образом, в двигателе э. д. с. якоря Еа направлена против тока Ia и приложенного к зажимам якоря напряжения Ua. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.

Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Еа и падением напряжения в обмотке якоря:

Из сравнения равенств (1-3) и (1-6) видно, что в генераторе Ua<Ea, а в двигателе Ua>Ea.

Принцип обратимости. Из изложенного выше следует, что каждая машина постоянного тока может работать как в режиме генератора, так и а режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.

Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направления вращения требуется только изменение направления тока в обмотке якоря.

Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.

Аналогичным образом может происходить изменение режима работы также в машинах переменного тока.

Преобразование энергии. На рис, 1-5 показаны направления действия механических и электрических величин в якоре генератора и двигателя постоянного тока.

Согласно первому закону Ньютона в применении к вращающемуся телу, действующие на это тело движущие и тормозящие вращающие моменты уравновешивают друг друга. Поэтому в генераторе при установившемся режиме работы электромагнитный момент

где МВ — момент на валу генератора, развиваемый первичным двигателем, МТР — момент сил трения в подшипниках, о воздух и на коллекторе электрической машины, МС — тормозящий момент, вызываемый потерями на гистерезис и вихревые токи в сердечнике якоря. Эти потери мощности появляются в результате вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом электромагнитные силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения.

В двигателе при установившемся режиме работы

где МВ — тормозящий момент на валу двигателя, развиваемый рабочей машиной (станок, насос и т. п.).

В генераторе МЭМ является движущим, а в двигателе тормозящим моментом, причем в обоих случаях МВ и МЭМ противоположны по направлению.

Развиваемая электромагнитным моментом МЭМ мощность РЭМ называется электромагнитной мощностью и равна

где

представляет собой угловую скорость вращения.

Подставим в выражение (1-8) значения МЭМ и Ω из равенств (1-5) и (1-9) и учтем, что линейная скорость на окружности якоря

Тогда получим

или на основании выражения (1-1)

В обмотке якоря под действием э. д. с. Еа и тока Iа развивается внутренняя электрическая мощность якоря

Согласно равенствам (1-10) и (1-11), РЭМ = Ра т. е. внутренняя электрическая мощность якоря равна электромагнитной мощности, развиваемой электромагнитным моментом, что отражает процесс преобразования механической энергии в электрическую в генераторе и обратный процесс в двигателе.

Умножим соотношения (1-3) и (1-6) на Ia. Тогда для генератора будем иметь

для двигателя

Левые части этих выражений представляют собой электрические мощности на зажимах якоря, первые члены правых частей — электромагнитную мощность якоря и последние члены — электрические потери мощности в якоре.

Хотя приведенные соотношения получены для простейшей машины постоянного тока (рис. 1-1), они действительны и в общем случае при более сложной обмотке якоря, так как э. д. с. и моменты отдельных проводников складываются. Эти соотношения являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Согласно им, механическая мощность, развиваемая на валу генератора первичным двигателем, за вычетом механических и магнитных потерь превращается в электрическую мощность в обмотке якоря, а электрическая мощность за вычетом потерь в этой обмотке выдается во внешнюю цепь.

В двигателе электрическая мощность, подводимая к якорю из внешней цепи, частично расходуется на потери в обмотке якоря, а остальная часть этой мощности превращается в мощность электромагнитного поля и последняя — в механическую мощность, которая за вычетом потерь на трение и потерь в стали якоря передается рабочей машине.

Установленные выше применительно к машине постоянного тока общие закономерности превращения энергии в равной степени относятся также к машинам переменного тока.

ЯКОРНЫЕ ОБМОТКИ МАШИН ПОСТОЯННОГО ТОКА

Общие сведения о якорных обмотках машин постоянного тока

Устройство обмоток

Обмотка якоря является важнейшим элементом машины и должна удовлетворять следующим требованиям:

1) обмотка должна быть рассчитана на заданные величины напряжения и тока нагрузки, соответствующие номинальной мощности;

2) обмотка должна иметь необходимую электрическую, механическую и термическую прочность, обеспечивающую достаточно продолжительный срок службы машины (до 15—20 лет);

3) конструкция обмотки должна обеспечить удовлетворительные условия токосъема с коллектора, без вредного искрения;

4) расход материала при заданных эксплуатационных показателях (к. п. д. и др.) должен быть минимальным;

5) технология изготовления обмотки должна быть по возможности простой.

В современных машинах постоянного тока якорная обмотка укладывается в пазах на внешней поверхности якоря. Такие обмотки называются барабанными. Обмотки якорей подразделяются на петлевые и волновые. Существуют также обмотки, которые представляют собой сочетание этих двух обмоток.

Основным элементом каждой обмотки якоря является секция, которая состоит из одного или некоторого количества последовательно соединенных витков и присоединена своими концами к коллекторным пластинам (рис. 3-1, 3-2),

В обмотке обычно все секции имеют одинаковое количество витков. На схемах обмоток секции для простоты изображаются всегда одновитковыми.

Для удобного расположения выходящих из пазов лобовых частей (см. рис. 1-9) обмотки якоря выполняются двухслойными. При этом в каждом пазу секции располагаются в два слоя (рис. 3-3): одна сторона каждой секции — в верхнем слое одного паза, а другая— в нижнем слое другого паза. На схемах обмоток стороны секций, находящиеся в верхнем слое, будем изображать сплошными линиями, а стороны, расположенные в нижнем слое, — штриховыми линиями (рис. 3-4). Однослойные якорные обмотки по принципу устройства не отличаются от двухслойных и применяются только при PН < 0,5 кВт.

Секции обмотки соединяются друг с другом в последовательную цепь (рис. 3-4) таким образом, что начало (н) последующей секции присоединяется вместе с концом (к) предыдущей секции к общей коллекторной пластине. Обмотки — петлевая и волновая — названы по внешнему очертанию контуров, образуемых последовательно соединенными секциями. Поскольку каждая секция имеет два конца и к каждой коллекторной пластине присоединены также два конца секций, то общее количество пластин коллектора К равно количеству секций обмотки S:

В простейшем случае в пазу находятся две секционные стороны: одна в верхнем и другая в нижнем слое. При этом число пазов якоря Z= S= К. Однако, для уменьшения пульсаций выпрямленного тока и напряжения, а также во избежание возникновения чрезмерно большого напряжения между соседними коллекторными пластинами число пластин должно быть достаточно большим. Обычно при UН = 110 ÷ 220 В

С другой стороны, изготовление якорей с большим числом пазов нецелесообразно, так как при этом пазы будут узкими, значительная часть их площади будет занята изоляцией секций от корпуса, для проводников останется мало места и в итоге получится проигрыш в мощности машины. Кроме того, большой расход изоляционных материалов и увеличение штамповочных работ вызовут удорожание машины, а мелкие зубцы будут непрочными.

По этим причинам обычно в каждом слое паза располагают рядом несколько п = 2, 3, 4, 5) секционных сторон (на рис. 3-3 ип = 2), При этом

В данном случае говорят, что в каждом реальном пазу имеется ип элементарных пазов, так что в каждом слое элементарного паза имеется одна секционная сторона. Очевидно, что общее число элементарных пазов якоря

Когда ип > 1, либо все секции имеют равную ширину (рис. 3-5,а), либо же часть секций имеет меньшую, а часть — большую ширину (рис, 3-5, б). В первом случае обмотка называется р а в -посекционной, а во втором — ступенчатой. При ступенчатой обмотке условия токосъема с коллектора улучшаются, однако эта обмотка сложнее и дороже и поэтому применяется реже, притом только в машинах большой мощности а500 кВт и выше).

В равносекционных обмотках ип секций, стороны которых лежат рядом в общих пазах, объединяются в катушку (рис. 3-6) и имеют общую изоляцию от стенок паза. Одновитковые секции при больших токах изготовляются из стержней, концы которых на противоположной от коллектора стороне якоря запаиваются с помощью хомутиков после укладки в пазы. Стержни ип секций объединяются в полукатушку (рис. 3-7). Секции ступенчатой обмотки являются всегда стержневыми.

На рис. 3-8 приведены примеры выполнения изоляции пазовой части обмотки.

В машинах малой мощности, когда ток параллельной ветви не превышает 60—75 а, катушки изготовляются из круглых изолированных проводников. В этом случае пазы делают трапецевидными (рис. 3-8, а), чтобы получить зубцы с неизменным по высоте сечением и тем самым избежать сильного насыщения корня зубца.

Проводники катушки при этом опускаются в паз по одному через узкую щель открытия паза. Такие пазы называются полузакрытыми, и изоляция таких обмоток чаще всего выполняется класса А или Е. В случае применения проводников прямоугольного сечения паз также выполняется прямоугольным (рис. 3-8, б). Такие обмотки изготовляются с различными классами изоляции. При изоляции классов А и Е проводники обмотки могут также опускаться в паз по одному, и тогда ширина открытия паза равна примерно половине ширины паза. Такие пазы называются полуоткрытыми. При изоляции классов В, F и Н заранее полностью изолированные катушки укладываются в полностью открытые пазы (рис. 3-8, б).

При Da ≤ 400 мм и va ≤ 35 м/сек обмотки в пазах укрепляются с помощью проволочных бандажей. Во всех остальных случаях применяются клинья из твердых пород дерева (бук и др.), гетинакса, текстолита, стеклотекстолита и др.

Плотность тока в проводниках обмотки якоря при номинальной нагрузке находится в пределах 4—10А/мм2. Меньшая цифра относится к крупным машинам, большая — к малым.

Условия симметрии обмоток. В современных якорных обмотках соединенные последовательно друг с другом секции образуют замкнутую на себя цепь. Такую обмотку можно изобразить схематически в виде замкнутой спирали (рис. 3-9), по поверхности которой скользят щетки. В изображенном на рис. 3-9 простейшем случае обмотка имеет одну пару (а = 1) параллельных ветвей. В общем случае а = 1, 2, 3…, и тогда машину можно рассматривать состоящей из а параллельно работающих элементарных машин, каждая из которых имеет две параллельные ветви.

Для обеспечения наилучших условий работы машины необходимо, чтобы э. д. с. Еа всех ветвей обмотки и их сопротивления были равны. В этом случае токи всех параллельных ветвей ia также будут равны:

Для удовлетворения этих условий необходимо, во-первых, чтобы магнитная цепь была симметричной по устройству и потоки всех полюсов были равны, во-вторых, чтобы все пары параллельных ветвей обмотки были эквивалентны, т. е. чтобы они располагались в магнитном поле идентичным образом. Обмотка, удовлетворяющая этим требованиям, называется симметричной.

При нарушении указанных требований разные ветви обмотки будут нагружаться различными по величине токами, что может вызвать нарушение работы щеточных контактов, а, кроме того, возрастут также потери в обмотке.

Чтобы обмотка была симметричной, на каждую пару параллельных ветвей должно приходиться одинаковое целое число (ц. ч.) секций и коллекторных пластин:

Для симметричного расположения параллельных ветвей в магнитном поле необходимо, чтобы

Соотношения (3-5), (3-6) и (3-7) представляют собой условия симметрии обмоток, и последние проектируются с их учетом. Однако в отдельных случаях допускаются определенные, не слишком большие отступления от этих требований, не вызывающие заметного ухудшения условий работы машины.

Выбор типа обмотки

Исходя из рациональных в практическом отношении размеров пазов» проводников обмотки, коллекторных пластин и щеток, а также из условий коммутации, ток параллельной ветви ограничивают значениями ia = 300 ÷ 350А, а в отдельных случаях iа = 400 ÷ 450 А. С другой стороны, в машинах малой мощности для получения заданного значения UН из-за малых значений Ф требуется большое число витков в ветви обмотки, что ограничивает сечение проводников и ia. Поэтому в таких машинах применяется обмотка с минимальным числом ветвей, т. е. простая волновая обмотка, а в машинах больших мощностей — другие типы обмоток.

Соответственно этому при UН = 220 В простая волновая обмотка используется до РН = 80 ÷ 100 кВт, сложная волновая обмотка — при РН = 150 ÷ 300 кВт, а простая петлевая обмотка — при РН = 100 ÷ 500 кВт и выше. Сложные петлевые обмотки применяются в машинах низкого напряжения (UH < 50 В) на большие токи и в крупных машинах нормального и повышенного напряжения (UН > 110 В). При других напряжениях указанные мощности изменяются пропорционально UH.

Комбинированные обмотки находят некоторое применение в машинах предельной мощности и при тяжелых режимах работы (быстро меняющиеся нагрузки и т. д.). На выбор типа обмотки влияет также число полюсов, скорость вращения и т. д.

Значение ип = 1 используется только в машинах низкого напряжения при больших токах. При UН = 220 В и РН > 30 ÷ 50 кВт число витков в секции всегда равно единице.

МАГНИТНОЕ ПОЛЕ МАШИНЫ ПРИ НАГРУЗКЕ

Реакция якоря и ее виды

Явление реакции якоря. Рассмотрим магнитное поле машины постоянного тока при холостом ходе (Iа = 0), создаваемое обмоткой возбуждения. Картина магнитного поля для этого случая при = 2 изображена на рис. 5-1, а. При нагрузке машины (Iа ≠ 0) обмотка якоря создает собственное магнитное поле, картина которого при установке щеток на геометрической нейтрали и при отсутствии возбуждения (iB = 0) изображена на рис. 5-1, б. Как видно из рис. 5-1, б, ось поля якоря направлена по оси щеток 11. Развиваемый в машине электромагнитный момент можно рассматривать как результат взаимодействия полюсов поля якоря Na Sa (рис. 5-1, б) и полюсов поля возбуждения N – S (рис. 5-1, а).

Поля якоря и индуктора, действующие совместно, образуют результирующее поле, характер которого на основании рис, 5-1, а и б показан на рис. 5-2. Полярность полюсов и направления токов якоря на этом рисунке соответствуют случаю, когда в режиме генератора (Г) якорь вращается по часовой стрелке, а в режиме двигателя (Д) — против часовой стрелки.

Из рис, 5-2 видно, что под влиянием поля якоря результирующее поле машины изменяется. Это явление называется реакцией якоря.

Поперечная реакция якоря. При установке щеток на геометрической нейтрали 11 (рис. 5-1, б) поле якоря направлено поперек оси полюсов, и в этом случае оно называется полем поперечной реакции якоря.

Как следует из рис. 5-2, поперечная реакция якоря вызывает ослабление поля под одним краем полюса и его усиление под другим, вследствие чего ось результирующего поля поворачивается в генераторе по направлению вращения якоря, а в двигателе — в обратную сторону. Если условно, как это иногда делается, рассматривать линии магнитной индукции в качестве упругих нитей, то возникновение электромагнитного момента можно рассматривать как результат действия упругих сил этих нитей, стремящихся сократиться и повернуть якорь. Из рис, 5-2 видно, что при такой трактовке явлений направления действия моментов совпадают с реальными как в режиме генератора, так и в режиме двигателя.

Под воздействием поперечной реакции якоря нейтральная линия на поверхности якоря, на которой индукция В = 0, поворачивается из положения геометрической нейтрали 11 на некоторый угол β в положение 22 (рис. 5-2), которое называется линией физической нейтрали. В генераторе физическая нейтраль повернута в сторону вращения якоря, а в двигателе — в обратную сторону.

Из рис. 5-1, б следует, что при вращении якоря в проводниках, показанных в левой части рис- 5-1, б, поле поперечной реакции

якоря индуктирует э. д. с. одного направления, а в правой — другого. В результате этого при установке щеток на геометрической нейтрали суммарная э. д. с. от поля реакции якоря в каждой параллельной ветви обмотки и на щетках равна нулю.

Продольная реакция якоря. Если щетки сдвинуты с геометрической нейтрали на 90° эл. (рис. 5-3), то поле якоря действует вдоль оси полюсов и называется полем продольной реакции якоря. Это поле в зависимости от направления тока в якоре оказывает на поле полюсов намагничивающее или размагничивающее действие, и в результате его взаимодействия с полем полюсов электромагнитный момент не возникает. Индуктируемая при вращении якоря э. д. с. на щетках будет в этом случае также равна нулю.

Общий случаи реакции якоря. Обычно щетки устанавливаются на геометрической нейтрали. Однако в результате неточной установки щеток, а также сознательных действий персонала щетки могут быть сдвинуты с геометрической нейтрали на некоторый угол α (рис. 5-4, а), причем 0 < α < 90° эл. В таком общем случае поверхность якоря на протяжении двойного полюсного деления можно разбить на две пары симметричных секторов: 1) аб и гв, 2) аг и бв. Токи первой пары секторов (рис. 5-4, б) создают поле поперечной реакции якоря, а токи второй пары (рис. 5-4, в) — поле продольной реакции якоря.

Указанные на рис. 5-4, а полярности полюсов и направления токов якоря соответствуют вращению якоря в режиме генератора (Г) по часовой стрелке, а в режиме двигателя (Д) — против часовой стрелки.

Как следует из рис. 5-4, при повороте щеток генератора в направлении вращения и щеток двигателя против направления вращения возникает размагничивающая продольная реакция якоря, вызывающая уменьшение потока полюсов. При сдвиге щеток в обратном направлении возникает намагничивающая продольная реакция якоря, вызывающая увеличение потока полюсов.

Напряжения между коллекторными пластинами и компенсационная обмотка

Напряжения между коллекторными пластинами. Реакция якоря в определенных условиях может вызвать нежелательные по своим последствиям явления.

К числу таких явлений относится прежде всего увеличение напряжения между коллекторными пластинами вследствие искажения поля под воздействием поперечной реакции якоря.

При холостом ходе максимальное напряжение между соседними пластинами в случае, например, применения простой петлевой обмотки

где wc — число витков секции.

При нагрузке максимальная индукция под одним из краев полюса (см. рис. 5-5, в) достигает некоторого значения Вмакс и

Следовательно,

Среднее напряжение между соседними коллекторными пластинами

и поэтому

При расчете машин постоянного тока число коллекторных пластин К выбирается таким, чтобы среднее напряжение между соседними коллекторными пластинами

не превышало 18—22 В.

Согласно выражениям (5-11) и (5-12),

Предельное значение uк.макс ограничивается возможностью возникновения электрической дуги между смежными пластинами. Поэтому обычно требуется, чтобы uк.макс ≤ 30 ÷ 50 В.

Недопустимое повышение uк.макс может произойти либо вследствие увеличения Вδ макс под воздействием реакции якоря (например, значительная перегрузка машины), либо вследствие уменьшения Вδ (двигатели с регулированием скорости в широких пределах).

Искажение кривой поля тем значительнее, чем меньше воздушный зазор. Величину зазора в машинах средней и большой мощности выбирают обычно такой, чтобы при номинальном режиме индукция под краем полюса не меняла своего направления («опрокидывание» поля). Согласно выражению (5-6), для этого необходимо, чтобы

При Da = 100 ÷ 500 мм обычно δ ≈ 0,009 Da.

Компенсационная обмотка.

Эффективным средством борьбы с искажением кривой поля и увеличением напряжения между коллекторными пластинами является применение компенсационной обмотки.

Она размещается в пазах, выштампованных в полюсных наконечниках (рис. 5-9, а), так, чтобы направления токов в этой обмотке и обмотке якоря в пределах каждого полюсного деления были противоположны. Последовательное соединение этих обмоток обеспечивает такую компенсацию при всех нагрузках.

При наличии компенсационной обмотки величину воздушного зазора можно брать минимально допустимой по механическим условиям. Компенсационная обмотка обычно применяется в мощных и быстроходных машинах, когда UН > 400 ÷ 450 В, PН ∕ 2p > 80 ÷ 100 кВт, машина подвергается перегрузкам более 20% и коммутация затруднена (реактивная э. д. с. er > 5 ÷ 7 В).

КОММУТАЦИЯ

Природа щеточного контакта

Природа проводимости в щеточном контакте.

Коммутацией называется процесс переключения секций обмотки из одной параллельной ветви в другую и изменения направления тока в них на обратное.

Во время коммутации секции замыкаются накоротко щетками, через которые ток из якоря передается во внешнюю цепь или из внешней цепи в якорь. Явления в щеточном контакте, т. е. между щетками и коллекторными пластинами, оказывают большое влияние на коммутацию и на исправную работу машины.

Передача тока от щетки к коллектору и обратно может осуществляться через: 1) непосредственный механический контакт между щеткой и коллектором 2) мельчайшие частицы медной и графитной пыли и 3) ионизированные воздушные щели между щеткой и коллектором. Соответственно говорят о зонах: 1) непосредственного контакта, 2) пылевидного контакта и 3) ионной проводимости.

Ввиду неровности микрорельефа непосредственный механический контакт или соприкосновение щетки с коллекторными пластинами, происходит только на части контактной поверхности щетки, и притом только в отдельных точках. Плотность тока в этих точках достигает нескольких тысяч Ампер на квадратный миллиметр. Точечные контакты непостоянны ввиду их износа и разрушения, а также перемещения коллектора, причем время существования каждого точечного контакта в отдельности весьма невелико.

Вследствие износа щеток и коллектора в контактном слое всегда имеется множество мелких пылинок. Поэтому контакт и передача тока частично осуществляются через эти пылинки. Плотность тока при этом также велика, а продолжительность каждого контакта из-за движения коллектора и сгорания пылинок невелика.

Точки непосредственного и пылевидного контакта вследствие больших плотностей тока накаляются до красного и белого каления. При красном калении медь и щетки, поляризованные анодно, испускают ионы. При белом калении происходит термическая эмиссия электронов из катодно поляризованных щеток и пластин. Эмитирующие электроны в свою очередь ионизируют воздух в контактном слое. В результате этого создается ионная проводимость тока. В зоне ионной проводимости под щеткой возникают также слабые электрические искровые и дуговые разряды. Такие разряды появляются и на краях щеток при замыкании секций накоротко и их размыкании.

Рассмотренные разнородные зоны проводимости невелики по размерам, перемежаются друг с другом и перемещаются по контактной поверхности щетки. Ионная проводимость преобладает при больших плотностях тока под щеткой (jщ > 5 А/см2.)

Искровые и дуговые разряды оказывают интенсивное термическое действие на материалы щетки и коллектора. Катод термически разрушается, и электродное вещество переносится с катода на анод. В результате этого происходит электрическая эрозия, следствием которой является перенос материала и износ электродов. Высокие температуры возникают лишь в отдельных точках, и поэтому щетки и коллекторные пластины в целом не нагреваются до высокой температуры.

Электролиз. В воздухе всегда есть влага, и все предметы покрыты тончайшей пленкой влаги, которая имеет определенную степень кислотности, так как в воздухе всегда содержатся различные окислы. Поэтому при прохождении тока через слой щеточного контакта возникает явление электролиза. В результате электролиза на коллекторе образуется блестящая пленка окислов меди, имеющая различную окраску (розовую, коричневую, фиолетовую, сине-стальную) и называемая политурой. Политура увеличивает переходное сопротивление щеточного контакта, ограничивает тем самым величину тока короткого замыкания секции и улучшает коммутацию.

Наличие хорошей политуры на коллекторе является признаком хорошей коммутации. Зеркало щетки при хорошей коммутации имеет также блестящую поверхность.

Сильное искрение и дуговые разряды разрушают политуру и зеркальную поверхность щеток, контактные поверхности становятся матовыми и появляются следы нагара. Переходное сопротивление щеточного контакта при этом уменьшается, и условия коммутации ухудшаются.

В верхних слоях атмосферы влаги весьма мало, и условия коммутации машин постоянного тока на высотных самолетах сильно ухудшаются. Для создания политуры в этом случае применяются специальные сорта щеток.

Вольтамперные характеристики щеток. Вследствие сложной природы щеточного контакта его переходное сопротивление не является постоянным, а зависит от величины тока. На рис. 6-1 сплошными линиями показаны две вольтамперные характеристики щеток, представляющие собой зависимость падения напряжения в контактном слое щетки ΔUЩ от средней плотности тока под щеткой jЩ. Там же штриховыми линиями изображены кривые удельного переходного сопротивления

в функции jЩ.

На начальном, круто поднимающемся, участке кривых ΔUЩ = f (jЩ) преобладает контактная проводимость, а на пологом участке — ионная проводимость.

Кривые 1 на рис. 6-1 соответствуют случаю, когда при малых jЩ сопротивление ρЩ велико и начальная часть вольтамперной характеристики круто поднимается. Такие щетки обеспечивают лучшие условия коммутации, чем щетки, соответствующие кривым 2 на рис 6-1.

Искрение на коллекторе

Причины искрения.

С практической точки зрения важно, чтобы коммутация происходила без значительного искрения у контактных поверхностей щеток, так как сильное искрение портит поверхность коллектора и щеток и делает длительную работу машины невозможной.

Причины искрения на щётках можно подразделить на механические и электромагнитные.

Механические причины искрения большей частью связаны с нарушением контакта между щетками и коллектором. Такие нарушения вызываются: 1) неровностью поверхности коллектора, 2) плохой пришлифовкой щеток к коллектору, 3) боем коллектора, если он превышает 0,2—0,3 мм, 4) выступанием отдельных коллекторных пластин, 5) выступанием слюды между коллекторными пластинами, 6) заеданием щеток в щеткодержателях (тугая посадка), 7) вибрацией щеток (нежесткость токосъемного аппарата, плохая балансировка машины, слишком свободное расположение щеток в щеткодержателях с зазорами более 0,2—0,3 мм, слишком большое расстояние между обоймой щеткодержателя и коллектором — более 2— 3 мм и т. д.). Искрение может быть вызвано также неравномерным натягом щеточных пружин, несимметричной разбивкой щеточных пальцев и щеток по окружности и другими причинами механического характера.

Электромагнитные причины искрения на щетках связаны с характером протекания электромагнитных процессов в коммутируемых секциях. Обеспечение достаточно благоприятного протекания этих процессов является важной задачей при создании машин постоянного тока, в особенности крупных. Изучение этих вопросов составляет основное содержание последующих параграфов настоящей главы.

Степень искрения. Качество коммутации, согласно ГОСТ 183—66 (табл. 6-1), оценивается степенью искрения (классом коммутации) под сбегающим краем щетки, т. е. под тем краем, из-под которого пластины коллектора выходят при своем вращении. Степени искрения 1, 114 и 112 допускаются при любых режимах работы.

Потенциальное искрение. В определенных условиях возникают искровые разряды между отдельными коллекторными пластинами на свободной поверхности коллектора, не занятой щетками. Такое искрение называется потенциальным. Оно вызывается либо накоплением угольной пыли и грязи в канавках между соседними коллекторными пластинами, либо возникновением чрезмерных напряжений между соседними пластинами. Такое искрение опасно тем, что оно способно развиться в короткое замыкание между пластинами и в так называемый круговой огонь.

Круговой огонь представляет собой короткое замыкание якоря машины через электрическую дугу на поверхности коллектора.

Круговой огонь возникает в результате чрезвычайно сильного расстройства коммутации, когда под сбегающим краем щетки появляются сильные искры и электрические дуги (рис. 6-2). Распространение огня происходит путем повторных зажиганий дуги. Появляющаяся под щеткой дуга растягивается электродинамическими силами и гаснет, оставляя за собой ионизированное пространство. Поэтому последующая дуга возникает в более благоприятных условиях, является более мощной и растягивается на большее расстояние по коллектору, и, наконец, дуга может растянуться до щеток противоположной полярности.

Круговой огонь возникает обычно при больших толчках тока якоря (значительные перегрузки, короткие замыкания на зажимах машины или в сети и т. п.).

При этом с одной стороны, появляется сильное искрение («вспышка») под щеткой, а с другой стороны, происходит значительное искажение кривой поля в зазоре и увеличение напряжения между отдельными коллекторными пластинами, что способствует возникновению кругового огня. Круговой огонь вызывает порчу поверхности коллектора и щеток.

Действенной мерой против возникновения кругового огня является применение компенсационной обмотки, а также быстродействующих выключателей, отключающих короткие замыкания в течение 0,05—0,10 сек.

Иногда, при UH > 1000 В, между щеточными бракетами разных полярностей ставятся также изоляционные барьеры, препятствующие распространению дуги.

Способы улучшения коммутации

Для создания хороших условий коммутации необходимо прежде всего обеспечить надлежащее состояние коллектора и щеточного аппарата, чтобы устранить механические причины искрения. Ниже рассматриваются способы обеспечения необходимых электромагнитных условий коммутации.

Эти способы направлены на уменьшение добавочного тока коммутации или тока короткого замыкания коммутируемой секции и сводятся к следующим мероприятиям: 1) созданию коммутирующей э.д.с. с помощью добавочных полюсов или сдвига щеток с геометрической нейтрали, 2) уменьшению реактивной э.д.с. и 3) увеличению сопротивления цепи коммутируемой секции.

Добавочные полюсы.

Основным способом улучшения коммутации в современных машинах постоянного тока является создание коммутирующего магнитного поля с помощью добавочных полюсов.

Добавочные полюсы устанавливаются между главными полюсами (рис. 6-12) и крепятся болтами к ярму индуктора. Н.с. добавочных полюсов FД.П., должна быть направлена против н. с. Реакции якоря Faq чтобы скомпенсировать ее и создать сверх того коммутирующее поле Вк для компенсации реактивной э. д. с. er. Следовательно, при отсутствии компенсационной обмотки FД.П. > Faq, а при наличии ее FД.П. + FK.0. > Faq. В последнем случае требуемая величина FД.П. меньше, так как основная доля реакции якоря компенсируется компенсационной обмоткой.

Учитывая сказанное, на основании рис. 6-12 можно сформулировать правило.

За главным полюсом данной полярности по направлению вращения якоря в режиме генератора должен следовать добавочный полюс противоположной полярности, а в режиме двигателя — добавочный полюс той же полярности.

Так как величины Faq и еr пропорциональны току якоря, то для их компенсации FД.П. и Вк также должны быть пропорциональны току якоря. Для удовлетворения этого условия обмотку добавочных полюсов соединяют последовательно с якорем, а добавочные полюсы выполняют с ненасыщенной магнитной системой. Поэтому при номинальной нагрузке в них допускается индукция не больше 0,8—1,0 Тл. Так как на отдельных участках ярма индуктора магнитные поля главных и добавочных полюсов складываются, то во избежание насыщения этих участков индукция главного поля в ярме должна быть не больше 1,3 Тл. Сердечники добавочных полюсов изготовляются массивными из стальной поковки или из листовой стали.

При таком устройстве добавочных полюсов индуктируемая ими коммутирующая э.д.с.

С другой стороны, реактивная э. д. с, также пропорциональна Iava

Поэтому соблюдение условия ек = еr при изменении нагрузки и скорости вращения достигается автоматически.

Добавочные полюсы применяются в машинах с РН> 0,3 кВт. Обычно число добавочных полюсов берется равным числу главных, однако в машинах мощностью до 2—2,5 кВт иногда делают половинное число добавочных полюсов. Применение добавочных полюсов позволяет увеличить линейную нагрузку машины и тем самым уменьшить ее размеры и стоимость.

Коммутация создает электромагнитные колебания частотой 1000 – 3000 Гц которые распространяются по электрической сети, присоединенной к машине. Эти колебания вызывают радиопомехи, затрудняющие работу радиоприемной и другой радиотехнической аппаратуры. Для борьбы с этими помехами производят симметрирование цепи якоря машины, т. е. обмотки, включенные последовательно с якорем, в том числе и обмотку добавочных полюсов разбивают на две части, которые присоединяют к щеткам противоположной полярности (рис. 6-14). Кроме того, между щетками разных полярностей и корпусом машины присоединяют конденсаторы для шунтирования высокочастотных колебаний на зажимах машины.

 

Улучшение коммутации путем сдвига щеток. В машинах мощностью до нескольких сотен ватт добавочных полюсов не ставят. Коммутирующее поле при этом можно создать путем сдвига щеток с геометрической нейтрали, благодаря чему в зоне коммутации начинает действовать ноле главных полюсов (рис. 6-15). Чтобы индуктируемая этим полем в коммутируемой секции э.д.с. ек имела правильное направление, поле главных полюсов в зоне коммутации должно быть направлено против поля реакции якоря. Для этого в генераторе щетки необходимо повернуть в сторону вращения, а в двигателе — наоборот.

Если поток главных полюсов Фδ изменяется пропорционально току якоря (машины с последовательным возбуждением), то при определенном, фиксированном положении щеток можно достичь хороших условий коммутации в широком диапазоне изменения нагрузки. Если же Фδ = const, то наилучшие условия коммутации достигаются только при одной, определенной нагрузке.

Установку щеток производят на глаз, наблюдая за их искрением.

Уменьшение реактивной э. д. с. Как уже указывалось выше, для обеспечения хорошей коммутации необходимо, чтобы еr ≤ 7 ÷ 12 В.

Перспективно применение машин постоянного тока с беспазовым якорем, в которых обмотка якоря укладывается и укрепляется на поверхности цилиндрического якоря. В этом случае потоки рассеяния ослабляются, и поэтому реактивная э. д. с. значительно уменьшается. Уменьшается также реакция якоря. Такие машины имеют тот недостаток, что величина немагнитного зазора между полюсами и якорем увеличивается и требуется значительно более сильная обмотка возбуждения.

Увеличение сопротивления цели коммутируемой секции в принципе возможно за счет выполнения «петушков» с повышенным сопротивлением. Однако это приводит к уменьшению к. п. д. машины, а также к увеличению плотности тока у сбегающего края щетки. Кроме того, такие «петушки» ненадежны в работе.

Существенным является подбор щеток с надлежащими характеристиками. При тяжелых условиях коммутации лучше работают твердые графитные щетки с повышенным переходным сопротивлением переходного контакта, однако при этом электрические потери в переходном контакте и механические потери на трение также больше. Щетки с круто поднимающейся вольтамперной характеристикой благоприятны с точки зрения уменьшения плотности тока на сбегающем краю щетки и способствуют улучшению коммутации. Медно-графитные щетки, обладающие малым переходным сопротивлением, применяются только в машинах на напряжение до 25—30 В.

Для улучшения коммутации предложен также ряд других мер, которые, однако, не находят широкого применения.

Улучшение коммутации при переходных режимах и пульсирующем токе. Выше основное внимание уделялось коммутации при нормальных установившихся режимах работы. При резких переходных режимах (толчкообразная и пульсирующая нагрузка, сильные перегрузки, короткие замыкания и т. п.), а также при питании машин постоянного тока через выпрямители от сети переменного тока, в особенности от однофазной сети (например, железные дороги, электрифицированные на переменном токе), условия коммутации ухудшаются.

Одной из причин ухудшения коммутации при указанных условиях может являться наличие трансформаторной э. д. с. етр, которая возникает при изменении магнитного потока главных полюсов. Компенсация этой э. д. с. с помощью добавочных полюсов практически невозможна, так как закономерности изменения eтp и ек различны. В частности, етр вовсе не зависит от скорости вращения. Поэтому в необходимых случаях принимают меры к уменьшению етр. Например, в тяговых двигателях постоянного тока, устанавливаемых на электровозах переменного тока с выпрямителями, обмотки возбуждения главных полюсов шунтируются активными сопротивлениями. Вследствие большой индуктивности обмотки возбуждения пульсирующая составляющая выпрямленного тока при этом будет ответвляться в шунтирующее сопротивление, и поток главных полюсов не будет содержать этой составляющей.

При быстрых изменениях тока в цепи якоря поток добавочных полюсов вследствие возникновения вихревых токов в массивной магнитной цепи и создаваемых ими магнитных потоков не будет изменяться пропорционально току якоря и компенсация реактивной э. д. с. нарушится. Улучшить коммутацию при этом можно с помощью индуктивной катушки, присоединяемой параллельно обмотке добавочных полюсов. Если постоянная времени индуктивной катушки значительно больше постоянной времени обмотки добавочных полюсов, то ток в этой катушке будет меняться весьма медленно по сравнению с током в обмотке добавочных полюсов. Поэтому резкие изменения тока якоря ΔI воспринимаются этой обмоткой, и так как через нее проходит только часть полного тока якоря, то относительное изменение тока в обмотке добавочных полюсов будет больше, чем в обмотке якоря. Такая «форсировка» тока обмотки добавочного полюса позволяет добиться более быстрого изменения его магнитного потока и тем самым компенсировать в определенной мере влияние вихревых токов в магнитопроводе. Однако наиболее эффективной мерой улучшения коммутации в машинах с резко изменяющейся нагрузкой или при сильных пульсациях питающего тока является изготовление сердечников добавочных полюсов, а также ярма машины из листовой электротехнической стали.

Эффективной мерой улучшения коммутации при резко переменной нагрузке является также применение компенсационной обмотки, которая предотвращает опасность возникновения кругового огня, а также улучшает условия действия добавочных полюсов.

При значительных перегрузках машины, а в особенности при коротких замыканиях, сердечники добавочных полюсов насыщаются прежде всего за счет больших потоков рассеяния. В этом случае добавочные полосы уже не в состоянии компенсировать реактивную э. д. с, и коммутация сильно нарушается. При наличии компенсационной обмотки поток рассеяния добавочных полюсов значительно уменьшается, в результате чего область их правильного действия увеличивается.

ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

ЭЛЕКТРИЧЕСКИХ МАШИН

Потери

Общие положения. При работе электрической машины часть потребляемой ею энергии теряется бесполезно и рассеивается в виде тепла. Мощность потерянной энергии называют потерями мощности или просто потерями.

Потери в электрических машинах подразделяются на основные и добавочные. Основные потери возникают в результате происходящих в машине основных электромагнитных и механических процессов, а добавочные потери обусловлены различными вторичными явлениями. Во вращающихся электрических машинах основные потери подразделяются на 1) механические потери, 2) магнитные потери, или потери в стали, и 3) электрические потери.

К электрическим потерям относятся потери в обмотках, которые называются также потерями в меди, хотя обмотки и не всегда изготовляются из меди; потери в регулировочных реостатах и потери в переходном сопротивлении щеточных контактов.

Механические потери состоят из 1) потерь в подшипниках, 2) потерь на трение щеток о коллектор или контактные кольца и 3) вентиляционных потерь, которые включают в себя потери на трение частей машины о воздух и другие потери, связанные с вентиляцией машины (мощность кинетической энергии отходящего воздуха и потери в вентиляторе). В ряде случаев электрические машины охлаждаются не воздухом, а водородом или водой, и соответствующие потери также относят к вентиляционным.

Магнитные потери включают в себя потери на гистерезис и вихревые токи, вызванные перемагничиванием сердечников активной стали. Для вычисления этих потерь сердечник подразделяется на части, в каждой из которых магнитная индукция постоянна.

Электрические потери в каждой обмотке вычисляют по формуле I 2r. Сопротивление обмотки зависит от ее температуры. Поэтому ГОСТ 183—66 предусматривает определение потерь в обмотках при расчетной температуре 75° С для классов изоляции обмоток А, Е и В и 115° С для классов F и Н. В нормальных машинах постоянного тока имеются две электрические цепи: цепь якоря и цепь возбуждения. Поэтому обычно рассчитывают потери в цепи якоря и в цепи возбуждения.

Добавочные потери. К этой группе относят потери, вызванные различными вторичными явлениями при нагрузке машины. Поэтому указанные потери, зависящие от тока нагрузки, называют иногда также добавочными потерями при нагрузке.

В машинах постоянного тока одна часть рассматриваемых потерь возникает вследствие искажения кривой магнитного поля в воздушном зазоре при нагрузке под влиянием поперечной реакции якоря. В результате этого магнитный поток распределяется по зубцам и сечению спинки якоря неравномерно: с одного края полюсного наконечника индукция в зубцах и спинке якоря уменьшается, а с другого края увеличивается. Такое неравномерное распределение потока вызывает увеличение магнитных потерь, подобно тому, как неравномерное распределение тока в проводнике (например, в результате поверхностного эффекта) вызывает увеличение электрических потерь. Вследствие такого неравномерного распределения потока увеличиваются также поверхностные потери в полюсных наконечниках. При наличии компенсационной обмотки рассмотренная часть добавочных потерь практически отсутствует.

Другая часть добавочных потерь в машинах постоянного тока связана с коммутацией. При изменении во времени потоков рассеяния коммутируемых секций в проводниках обмотки индуктируются вихревые токи. Добавочный ток коммутации также вызывает дополнительные потери.

Существуют также другие причины возникновения добавочных потерь (вихревые токи в крепежных деталях и т. п.).

Вследствие сложной природы добавочных потерь формулы для их вычисления получаются также сложными и, кроме того, не особенно точными. Экспериментальное определение этих потерь также затруднительно. Поэтому на практике добавочные потери чаще всего оценивают на основе опытных данных в виде определенного процента от номинальной мощности. Согласно ГОСТ эти потери для машин постоянного тока при номинальной нагрузке принимаются: при отсутствии компенсационной обмотки равными 1,0% и при наличии компенсационной обмотки равными 0,5% от отдаваемой мощности для генератора и проводимой мощности для двигателя. Для других нагрузок эти потери пересчитываются пропорционально квадрату тока нагрузки.

Все виды добавочных потерь, не связанные непосредственно с электрическими процессами в цепях обмоток машины, покрываются за счет механической мощности на валу машины.

Коэффициент полезного действия

Общие положения. Коэффициент полезного действия определяется как отношение полезной, или отдаваемой, мощности Р2 к потребляемой мощности Р1:

или в процентах

Современные электрические машины имеют высокий к.п.д. Так, у машин постоянного тока мощностью 10 кВт к. п. д. составляет 83—87%, мощностью 100 кВт — 88—93% и мощностью 1000 кВт — 92—96%. Лишь малые машины имеют относительно низкие к.п.д. Например, у двигателя постоянного тока мощностью 10 Вт к. п. д. 30—40%.

Кривая к. п. д. электрической машины η = f2) сначала быстро растет с увеличением нагрузки, затем к.п.д. достигает максимального значения (обычно при нагрузке, близкой к номинальной) и при больших нагрузках уменьшается (рис. 7-1), Последнее объясняется тем, что отдельные виды потерь (электрические и добавочные) растут быстрее, чем полезная мощность.

НАГРЕВАНИЕ И ОХЛАЖДЕНИЕ ЭЛЕКТРИЧЕСКИХ МАШИН

Теплопередача в электрических машинах

Потери энергии вызывают выделение тепла и нагревание частей электрической машины. Передача тепла от более нагретых частей машины к менее нагретым и в окружающую среду происходит путем теплопроводности, лучеиспускания и конвекции.

Теплопередача путем теплопроводности в электрических машинах происходит главным образом внутри твердых тел (медь, сталь, изоляция), в то время как в газах (воздух, водород) и жидкостях (масло, вода) главное значение имеет передача тепла конвекцией.

Теплопередача лучеиспусканием.

Теплопередача при естественной конвекции. Частицы жидкости или газа, соприкасающиеся с нагретым телом, нагреваются, становятся легче и вследствие этого поднимаются кверху, уступая свое место другим, еще не нагретым частицам, которые в свою очередь, нагреваясь, поднимаются кверху и т. д. Это явление будем называть естественной конвекцией в отличие от искусственной конвекции, которая создается искусственно, например путем обдува охлаждаемой поверхности воздухом при помощи вентилятора.

В электрических машинах условия рассеяния тепла лучеиспусканием и конвекцией для различных поверхностей различны. В современных вентилируемых машинах отвод тепла путем искусственной конвекции настолько преобладает над отводом тепла лучеиспусканием, что последний обычно не учитывают.

Теплопередача при искусственной конвекции. Для более интенсивного отвода тепла обычно применяют обдув внутренних, а иногда и внешних поверхностей электрических машин воздухом.

Усиление теплоотдачи при искусственной конвекции происходит в разной степени в зависимости от равномерности обдува, формы обдуваемых поверхностей и т. д. Исследование данного вопроса усложняется конструктивным многообразием электрических машин и их частей, а также сложностью аэродинамических явлений во внутренних полостях и каналах машины.

Основные номинальные режимы работы электрических машин

и допустимые превышения температуры

Основные номинальные режимы работы. Режимы работы электрических машин в условиях эксплуатации весьма разнообразны. Машины могут работать с полной нагрузкой в течение длительного времени (как, например, генераторы на электрических станциях, электродвигатели насосных установок и т. д.) и в продолжение относительно короткого промежутка времени (некоторые крановые двигатели и т. д.). В современных автоматизированных промышленных и других установках электрические машины весьма часто имеют циклический режим работы. В очень многих случаях электрические машины работают с переменной нагрузкой.

При различных режимах работы электрические машины нагреваются неодинаково. С точки зрения наиболее рационального использования материалов целесообразно, чтобы нагрев частей электрической машины в реальных условиях ее эксплуатации был близок к допустимому по государственным стандартам. Для этого каждую электрическую машину следовало бы проектировать и изготовлять с учетом конкретных условий и режимов ее работы в эксплуатации. Однако на практике это неосуществимо, так как даже при предположении, что условия работы каждой электрической машины можно предвидеть, в этом случае нельзя организовать массовое или серийное производство однотипных электрических машин и они были бы дорогими. Поэтому, согласно ГОСТ, электрические машины изготовляются для трех основных номинальных режимов работы.

Продолжительным номинальным режимом работы электрической машины называется режим работы при неизменной номинальной нагрузке, продолжающейся столько времени, что превышения температуры всех частей электрической машины при неизменной температуре охлаждающей среды достигают практически установившихся значений.

Кратковременным номинальным режимом работы электрической машины называется режим работы, при котором периоды неизменной номинальной нагрузки при неизменной температуре охлаждающей среды чередуются с периодами отключения машины: при этом периоды нагрузки не настолько длительны, чтобы превышения температуры всех частей электрической машины могли достигнуть практически установившихся значений, а периоды остановки электрической машины настолько длительны, что все части ее приходят в практически холодное состояние.

Согласно ГОСТ, машины с кратковременным режимом работы изготовляются с длительностью рабочего периода 15, 30, 60 и 90 мин.

Повторно-кратковременным номинальным режимом работы электрической машины называется режим работы, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) при неизменной температуре охлаждающей среды чередуются с кратковременными периодами отключения машины (паузами), причем как рабочие периоды, таки паузы не настолько длительны, чтобы превышения температуры отдельных частей электрической машины могли достигнуть установившихся значений.

Повторно-кратковременный номинальный режим работы характеризуется относительной продолжительностью включения (ПВ) т. е. отношением продолжительности рабочего периода к продолжительности цикла (суммарной продолжительности рабочего периода и паузы).

ГОСТ предусматривает изготовление машин с повторно-кратковременным режимом работы с продолжительностью включения (ПВ) 15, 25, 40 и 60%. Большинство электрических машин изготовляется для продолжительного режима работы.

Охлаждение электрических машин

Конструктивные формы исполнения электрических машин. Для предотвращения чрезмерного нагрева электрических машин необходимо обеспечить надлежащие условия отвода выделяющегося в машинах тепла. С ростом мощности электрических машин условия отвода тепла утяжеляются, и поэтому в крупных машинах необходимо применять более интенсивные способы охлаждения.

Способы охлаждения в свою очередь зависят от конструктивных форм исполнения электрических машин, из которых здесь укажем лишь наиболее типичные.

Открытые электрические машины не имеют специальных приспособлений для предохранения от случайного прикосновения к вращающимся и токоведущим частям, а также для предотвращения попадания внутрь машины посторонних предметов. Такие машины находят применение только в машинных залах и лабораториях. Защищенные электрические машины имеют указанные приспособления и применяются в закрытых помещениях. Брызгозащищенные машины дополнительно защищены от попадания внутрь машины капель влаги, падающих под углом до 45° к вертикали. В этих машинах на все отверстия, расположенные в их верхних частях, устанавливаются глухие крышки и жалюзи, которые могут иметь прорези, прикрытые козырьками. Машины с таким исполнением весьма распространены и могут быть использованы также на открытом воздухе.

В закрытых электрических машинах внутреннее пространство совершенно отделено от внешней среды. Они применяются в пыльных помещениях, а также на открытом воздухе. Дальнейшим развитием закрытых машин являются взрывозащищенные (взрыво-безопасные) и герметические машины. Первые из них используются для работы вo взрывоопасных шахтах и на химических предприятиях, когда требуется, чтобы искрение или взрыв внутри машины не приводили к взрыву или воспламенению газов но внешней среде. Герметические машины выполняются с особо плотным соединением поверхностей разъема, так что они могут работать даже под водой.

Способы охлаждения электрических машин. По способу охлаждения различаются:

1) машины с естественным охлаждением, в которых нет никаких специальных приспособлений для охлаждения;

2) машины с внутренней самовентиляцией, охлаждение которых происходит с помощью вентиляторов или других вентиляционных устройств, укрепленных на вращающихся частях вентилируемой машины и осуществляющих вентиляцию внутренних полостей машины (открытые и защищенные машины);

3) машины с наружной самовентиляцией, в которых путем самовентиляции охлаждается внешняя поверхность машины, а внутренние части машины закрыты для доступа внешнего воздуха (закрытые машины);

4) машины с независимым охлаждением, в которые охлаждающая газообразная или жидкая среда подается с помощью отдельного вентилятора, компрессора или насоса, имеющего собственный привод.

Особенности разных способов охлаждения иллюстрируются ниже на примере машин постоянного тока, но и охлаждение машин переменного тока осуществляется подобным же образом.

Машины с естественным охлаждением в настоящее время строятся лишь на мощности порядка нескольких десятков ватт. В некоторых случаях естественное охлаждение применяется также для закрытых машин мощностью до нескольких сотен ватт, но в этом случае для усиления отдачи тепла поверхность охлаждения увеличивают путем изготовления корпуса машины с ребрами.

Машины с внутренней самовентиляцией имеют наибольшее распространение. При этом различают аксиальную (рис, 8-4) и радиальную (рис. 8-5) системы вентиляции. В первом случае передача тепла воздуху происходит при его движении вдоль охлаждаемых поверхностей в аксиальном направлении, а во втором — в радиальном направлении. Потоки воздуха омывают также коллектор. Воздух поступает в машину с одного ее конца и выбрасывается с другого.

Воздух при движении вдоль охлаждаемых частей машины подогревается, и, следовательно, нагрев машины при аксиальной вентиляции будет в аксиальном направлении неравномерным. Поэтому аксиальная вентиляция применяется обычно при активной длине машины до 200—250 мм.

Машины с наружной самовентиляцией — это машины закрытой конструкции, у которых на валу установлен наружный вентилятор, обдувающий наружную поверхность станины (рис. 8-6). При этом для увеличения поверхности охлаждения наружная поверхность станины часто снабжается продольными ребрами. Часто машина имеет также внутренний вентилятор или вентиляционные крылышки для создания более интенсивного движения воздуха внутри машины и усиления теплообмена между внутренними частями машины и станиной (рис, 8-6).

Машины с независимой вентиляцией. Обычно такие машины тоже охлаждаются воздухом, который подается в машину с помощью отдельного вентилятора (рис. 8-7). Такую вентиляцию называют также принудительной. Иногда вентилятор со своим приводным двигателем устанавливается на корпусе вентилируемой машины.

В рассматриваемом случае система вентиляции может быть как аксиальной, так и радиальной. Применяется этот способ вентиляции обычно тогда, когда скорость вращения машины регулируется в широких пределах, так как в этом случае при самовентиляции (с вентилятором на валу машины) нельзя обеспечить необходимого расхода воздуха при низкой скорости вращения.

Водородное охлаждение. Водород является более эффективным охлаждающим агентом, чем воздух. По сравнению с воздухом у водорода при атмосферном давлении теплопроводность больше в 7,1 раза и средний коэффициент теплоотдачи при одной и той же скорости больше в 1,7 раза, а при одинаковом весовом расходе — в 11,8 раза. Благодаря этому для достижения такой же эффективности охлаждения, как и воздухом, требуются меньшие весовые расходы водорода, а вентиляционные потери, которые в крупных быстроходных машинах составляют большую часть суммарных потерь, снижаются почти в десять раз. При водородном охлаждении срок службы изоляции увеличивается, так как исключаются окислительные процессы и образование вредных азотистых соединений при коронных разрядах. Поэтому водород находит широкое распространение для охлаждения быстроходных машин переменного тока мощностью 25 000 кВт и выше.

При водородном охлаждении применяется замкнутая система вентиляции и во избежание образования взрывчатой смеси давление в системе поддерживается несколько выше атмосферного (1,05 атм). В ряде случаев для усиления интенсивности охлаждения давление водорода в системе охлаждения увеличивается до 3—5 атм. При этом необходимо иметь надежные уплотнения, чтобы не допустить значительной утечки водорода из машины.

Непосредственное, или внутреннее, охлаждение обмоток. Для электрических машин мощностью 300—500 тыс. кВт и больше замкнутая система вентиляции с водородным охлаждением также оказывается недостаточной. Поэтому в таких машинах обмотка изготовляется из полых проводников и применяется внутреннее охлаждение этих проводников водородом при давлении до нескольких атмосфер или водой. Можно также использовать вместо водорода или воды трансформаторное масло. Однако теплопроводность и коэффициент теплоотдачи воды значительно больше, чем у трансформаторного масла. Поэтому масло используется реже.

Так как подвод воды в обмотку вращающегося ротора связан с определенным усложнением конструкции, то применяется также смешанное внутреннее охлаждение: обмотки ротора охлаждаются водородом, а обмотки статора — водой. Водород подается в обмотки при помощи компрессоров или особых газозаборников, установленных на вращающемся роторе. Для подачи воды применяются насосы.

Рассмотренные системы непосредственного охлаждения во всех случаях выполняются замкнутыми, с циркуляцией одной и той же массы охлаждающего агента и с охлаждением его в предназначенных для этой цели охладителях.

При непосредственном охлаждении обмоток перепады температуры в изоляции исключаются и можно резко увеличить плотность тока.

При водяном охлаждении мощность машины ограничивается в основном уже не условиями нагрева, а другими техническими и экономическими показателями.

ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА

Общие сведения о генераторах постоянного тока

Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока широко используются в различных промышленных, транспортных и других установках (для питания электроприводов с широким регулированием скорости вращения, в электролизной промышленности, на судах, тепловозах и т. д.). В этих случаях генераторы постоянного тока обычно приводятся во вращение электродвигателями переменного тока, паровыми турбинами или двигателями внутреннего сгорания.

Классификация генераторов постоянного тока по способу возбуждения.

Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.

Генераторы независимого возбуждения делятся на генераторы с электромагнитным возбуждением (рис. 9-1, а), в которых обмотка возбуждения ОВ питается постоянным током от постороннего источника (аккумуляторная батарея, вспомогательный генератор или возбудитель постоянного тока, выпрямитель переменного тока), и на магнитоэлектрические генераторы с полюсами в виде постоянных магнитов. Генераторы последнего типа изготовляются только на малые мощности. В данной главе рассматриваются генераторы с электромагнитным возбуждением.

В генераторах с самовозбуждением обмотки возбуждения питаются электрической энергией, вырабатываемой в самом генераторе.

Во всех генераторах с электромагнитным возбуждением на возбуждение расходуется 0,3—5% номинальной мощности машины. Первая цифра относится к самым мощным машинам, а вторая — к машинам мощностью около 1 кВт.

Генераторы с самовозбуждением в зависимости от способа включения обмоток возбуждения делятся на:

1) генераторы параллельного возбуждения, или шунтовые (рис. 9-1, б),

2) генераторы последовательного возбуждения, или сериесные (рис. 9-1, в), и

3) генераторы смешанного возбуждения, или компаундные (рис, 9-1, г).

Генераторы смешанного возбуждения имеют две обмотки возбуждения, расположенные на общих главных полюсах: параллельную и последовательную. Если эти обмотки создают н. с. одинакового направления, то их включение называется согласным; в противном случае соединение обмоток возбуждения называется встречным. Обычно применяется согласное включение обмоток возбуждения, причем основная часть н. с. возбуждения (65—80%) создается параллельной обмоткой возбуждения.

На рис. 9-1, г конец параллельной обмотки возбуждения (от реостата возбуждения) приключен за последовательной обмоткой возбуждения («длинный шунт»), однако этот конец может быть присоединен и непосредственно к якорю («короткий шунт»). Обычно применяется соединение, изображенное на рис. 9-1, г.

В генераторе параллельного возбуждения ток возбуждения составляет 1—5% от номинального тока якоря Iан или тока нагрузки Iн = Iан – iв. В генераторах последовательного возбуждения эти токи равны друг другу; iв = Iа = I и падение напряжения на обмотке возбуждения при номинальной нагрузке составляет 1—5% от UН. Обмотки возбуждения у генераторов параллельного возбуждения имеют большое число витков малого сечения, а у генераторов последовательного возбуждения — относительно малое количество витков большого сечения.

В цепях обмоток параллельного возбуждения, а часто также в цепи обмотки независимого возбуждения для регулирования тока возбуждения включают реостаты R Р.В. (рис. 9-1, а, б и г).

Крупные машины постоянного тока работают с независимым возбуждением. Машины малой и средней мощности большей частью имеют параллельное или смешанное возбуждение. Машины с последовательным возбуждением менее распространены.

В цепях обмоток параллельного возбуждения, а часто также в цепи обмотки независимого возбуждения для регулирования тока возбуждения включают реостаты R Р.В. (рис. 9-1, а, б и г).

Крупные машины постоянного тока работают с независимым возбуждением. Машины малой и средней мощности большей частью имеют параллельное или смешанное возбуждение. Машины с последовательным возбуждением менее распространены.

Установка щеток на нейтраль. Обычно щетки устанавливаются по геометрической нейтрали, и ниже при рассмотрении работы генераторов и двигателей имеется в виду именно этот случай, если не оговорено другое положение щеток.

Установка щеток на нейтраль производится индуктивным способом — путем включения и выключения постоянного тока в обмотке возбуждения неподвижной машины и наблюдения за показаниями вольтметра или гальванометра, присоединенного к щеткам. Щеточная траверса устанавливается и закрепляется в положении, при котором показание прибора при выключении тока равно нулю или минимально. Лучше иметь прибор с нулем посре дине шкалы. Ток в обмотке возбуждения не должен превышать примерно 10% от номинального во избежание индуктирования больших э. д. с. самоиндукции, способных повредить изоляцию обмотки возбуждения.

Можно также установить щетки в таком положении, когда при лолостом ходе у генератора напряжение максимально или у двигателя скорость вращения минимальна. Однако этот способ является более грубым,

Система относительных единиц

В теории электрических машин, а также в других областях электротехники широко пользуются системой относительных единиц, в которой напряжения, токи, мощности и другие величины выражаются в долях некоторых базисных значений этих величин. В качестве базисных значений берут номинальные значения тока, напряжения и т. д.

Относительные величины в отличие от абсолютных величин, измеряемых в физических единицах (например, в единицах системы СИ), будем обозначать звездочкой. Тогда относительные значения тока

и напряжения

Относительное значение мощности

Относительные скорости вращения

и относительный момент вращения машины постоянного тока

В качестве базисного, или номинального, значения электрического сопротивления возьмем

которое для генератора равно сопротивлению нагрузки (потребителя) при номинальном режиме работы генератора. Тогда относительное значение сопротивления r* будет

Таким образом, относительное значение сопротивления r* представляет собой падение напряжения в данном сопротивлении при номинальном токе, отнесенное к номинальному напряжению, или, иными словами, относительное падение напряжения при номинальном токе.

Относительные единицы позволяют лучше судить о значении тех или иных величин. Если, например, сообщается, что нагрузка генератора составляет Р = 15 кВт, то ничего нельзя сказать о том, велика или мала эта нагрузка для данного генератора. Если, например, РН = 10 кВт, то машина сильно перегружена, а если РН = 10 000 кет, то нагрузка ничтожна. В то же время относительное значение мощности (Р* = 1,5 для первой машины и Р* = 0,0015 для второй) вполне конкретно характеризует величину нагрузки.

Генераторы независимого возбуждения

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются: 1) напряжение на зажимах U, 2) ток возбуждения iВ, 3) ток якоря Iа или ток нагрузки I, 4) скорость вращения п.

Обычно генераторы работают при п = const. Поэтому основные характеристики генераторов определяются при п = пН = const.

Существует пять основных характеристик генераторов: 1) холостого хода, 2) короткого замыкания, 3) внешняя, 4) регулировочная, 5) нагрузочная.

Все характеристики могут быть определены как экспериментальным, так и расчетным путем. Рассмотрим основные характеристики генератора независимого возбуждения.

Характеристика холостого хода (х. х. х.) U = f (iВ) при I = 0 и п = const определяет зависимость напряжения U или э. д. с. якоря Еa от тока возбуждения при холостом ходе (I = 0, Р2 = 0). Характеристика снимается экспериментально по схеме рис. 9-1, а при отключенном рубильнике.

Снятие характеристики целесообразно начать с максимального значения тока возбуждения и максимального напряжения (U = (1,15 ÷ 1,25)UН, точка а кривой на рис. 9-3). При уменьшении iВ напряжение уменьшается по нисходящей ветви аб характеристики сначала медленно ввиду насыщения магнитной цепи, а затем быстрее. При iВ = 0 генератор развивает некоторое напряжение UОО = 0б (рис. 9-3), обычно равное 2—3% от UН, вследствие остаточной намагниченности полюсов и ярма индуктора. Если затем изменить полярность возбуждения и увеличить iВ в обратном направлении, начиная с iВ = 0, то при некотором iВ < 0 напряжение упадет до нуля (точка в, рис. 9-3), а затем U изменит знак и будет возрастать по абсолютной величине по ветви вг х. х. х. Когда ток iВ и напряжение U достигнут в точке г такого же абсолютного значения, как и в точке а, ток iВ уменьшаем до нуля (точка д), меняем его полярность и снова увеличиваем, начиная с iВ = 0. При этом U меняется по ветви деа х. х. х. В итоге вернемся в точку а характеристики. Х. х. х. имеет вид неширокой гистерезисной петли вследствие явления гистерезиса в магнитной цепи индуктора.

При снятии х. х. х. ток iB необходимо менять только в направлении, указанном на рис. 9-3 стрелками, так как в противном случае точки не будут ложиться на данную гистерезисную петлю, а будут рассеиваться.

Средняя штриховая х. х. х. на рис. 9-3 представляет собой расчетную х. х. х., которая в определенном масштабе повторяет магнитную характеристику генератора, к по ней можно определить коэффициент насыщения машины kμ.

Характеристика холостого хода позволяет судить о насыщении магнитной цепи машины при номинальном напряжении, проверять соответствие расчетных данных экспериментальным и составляет основу для исследования эксплуатационных свойств машины.

Характеристика короткого замыкания (х. к. з.)

I = f (iB) при U = 0 и п = const снимается при замыкании выходных зажимов цепи якоря генератора накоротко. Так как U = 0, то, согласно выражению (9-14), Ea = Ia Ra и поскольку Ra мало, то в условиях опыта э.д.с. Еа также должна быть мала. Поэтому, необходимо проявлять осторожность и начинать снятие х. к. з. с минимальных значений iв, чтобы ток якоря не получил недопустимо большого значения. Обычно снимают х. к. з. до I = (1,25 ÷ 1,5) IН. Так как при снятии х. к. з. электродвижущая сила мала и поэтому поток мал и машина не насыщена, то зависимость I = f (iB) практически прямолинейна (рис. 9-4). При iB = 0 из-за наличия остаточного магнитного потока ток I ≠ 0 и в крупных машинах близок к номинальному току или даже больше его. Поэтому, перед снятием х. к. з. такую машину целесообразно размагнитить, питая на холостом ходу обмотку возбуждения таким током возбуждения обратного направления, при котором будет U = 0. В размагниченной машине х. к. з. начинается с нуля (штриховая линия на рис. 9-4). Если х. к. з. снята без предварительного размагничивания машины (сплошная линия на рис. 9-4), то ее также целесообразно перенести параллельно самой себе в начало координат (штриховая линия на рис. 9-4).

Внешняя характеристика генератора независимого возбуждения U = f(I) при iB = const и п = const (рис. 9-6) определяет зависимость напряжения генератора от его нагрузки в естественных условиях, когда ток возбуждения не регулируется.

При увеличении I напряжение U несколько падает по двум причинам: вследствие падения напряжения в цепи якоря IRa и уменьшения э. д. с. Еа ввиду уменьшения потока под воздействием поперечной реакции якоря (при щетках на геометрической нейтрали). При дальнейшем увеличении I напряжение начинает падать быстрее, так как под воздействием реакции якоря поток уменьшается и рабочая точка смещается на более круто падающий участок кривой намагничивания машины.

Внешнюю характеристику рекомендуется снимать при таком возбуждении (iв = iВ.Н.), когда при I = IН также U = UН (номинальный режим). При переходе к холостому ходу (I = 0) в этом случае напряжение возрастает на вполне определенную величину ΔUН (рис. 9-6), которая называется номинальным изменением напряжения генератора. В генераторах независимого возбуждения

Регулировочная характеристика iB = f (I) при U = const и п = const показывает, как нужно регулировать ток возбуждения, чтобы при изменении нагрузки напряжение генератора не менялось (рис. 9-8). С увеличением I ток iВ необходимо несколько увеличивать, чтобы компенсировать влияние падения напряжения IaRa и реакции якоря.

При переходе от холостого хода с U = UН к номинальной нагрузке I = IН, увеличение тока возбуждения составляет 15—25%.

Нагрузочная характеристика U = f (iВ) при I = const и п = const (кривая 2 на рис. 9-10) по виду схожа с х. х. х. (кривая 1 на рис. 9-10) и проходит несколько ниже х. х. х. вследствие падения напряжения в цепи якоря и влияния реакции якоря. Х. х. х. представляет собой предельный случай нагрузочной характеристики, когда I = 0. Обычно нагрузочную характеристику снимают при I = IН.

Генераторы параллельного возбуждения

Самовозбуждение генератора параллельного возбуждения происходит при соблюдении следующих условий: 1) наличия остаточного магнитного потока полюсов; 2) правильного подключения концов обмотки возбуждения или правильного направления вращения. Кроме того, сопротивление цепи возбуждения RB при данной скорости вращения п должно быть ниже некоторого критического значения или скорость вращения при данном RB должна быть выше некоторой критической величины.

Для самовозбуждения достаточно, чтобы остаточный поток составлял 2—3% от номинального. Остаточный поток такой величины практически всегда имеется в уже работавшей машине. Вновь изготовленную машину или машину, которая по каким-либо причинам размагнитилась, необходимо намагнитить, пропуская через обмотку возбуждения ток от постороннего источника.

При соблюдении необходимых условий процесс самовозбуждения протекает следующим образом. Небольшая э. д. с., индуктируемая в якоре остаточным магнитным потоком, вызывает в обмотке возбуждения малый ток iВ. Этот ток вызывает увеличение потока полюсов, а, следовательно, увеличение э. д. с, которая в свою очередь обусловливает дальнейшее увеличение iВ и т. д. Такой лавинообразный процесс самовозбуждения продолжается до тех пор, пока напряжение генератора не достигнет установившегося значения.

Если подключение концов обмотки возбуждения или направление вращения неправильны, то возникает ток iВ обратного направления, вызывающий ослабление остаточного потока и уменьшение э. д. с., вследствие чего самовозбуждение невозможно. Тогда необходимо переключить концы обмотки возбуждения или изменить направление вращения. В соблюдении этих условий можно убедиться, следя с помощью вольтметра с малым пределом измерения за напряжением якоря при замыкании и размыкании цепи возбуждения.

Полярность зажимов генератора при самовозбуждении определяется полярностью остаточного потока. Если при заданном направлении вращения полярность генератора необходимо изменить, то следует перемагнитить машину путем подачи тока в обмотку возбуждения от постороннего источника.

Вообще любые процессы самовозбуждения — электрические, и другие, наблюдаемые в различных устройствах, — ограничиваются только нелинейностью характеристик системы.

Характеристика холостого хода U = f (iВ) при I = 0 и п = const при параллельном возбуждении может быть снята только в одном квадранте (рис. 9-14) путем регулирования iВ с помощью регулировочного реостата в цепи возбуждения (см. рис. 9-1, б). Так как ток iВ мал, то U ≈ Ea и характер кривой х. х. х. у генератора с параллельным возбуждением будет таким же, как и у генератора с независимым возбуждением.

Характеристика короткого замыкания I = f (iB) при U = 0 и п = const для генератора параллельного возбуждения может быть снята только при питании обмотки возбуждения от постороннего источника, как и для генератора независимого возбуждения, так как при самовозбуждении при U = 0 также iB = 0.

Внешняя характеристика U = f (I) генератора параллельного возбуждения снимается при RВ = const и п = const, т. е. без регулирования в цепи возбуждения, при естественных условиях работы. Вследствие этого к двум причинам падения напряжения, указанным для генератора независимого возбуждения, прибавляется третья — уменьшение iB при уменьшении U. В результате внешняя характеристика генератора параллельного возбуждения (рис. 9-15, кривая 1) падает круче, чем у генератора независимого возбуждения

(кривая 2). Поэтому номинальное изменение напряжения у генератора параллельного возбуждения больше и составляет ΔUН% =10 ÷ 20%.

Характерной особенностью внешней характеристики генератора параллельного возбуждения является то, что при некотором максимальном значении тока I = Iмакс (точка а на рис. 9-15) она делает петлю и приходит в точку б на оси абсцисс, которая соответствует установившемуся току короткого замыкания. Ток Iк.уст относительно мал и определяется остаточным магнитным потоком, так как в данном случае U = 0, и поэтому iВ = 0.

Такой ход характеристики объясняется следующим. При увеличении тока I напряжение U падает сначала медленно, а затем быстрее, так как с уменьшением U и iB падает поток Фδ, магнитная цепь становится менее насыщенной и малые уменьшения iВ будут вызывать все большие уменьшения Фδ и U (см. рис. 9-14). Точка а на рис. 9-15 соответствует переходу кривой х. х. х. с нижней части колена на ее нижний, прямолинейный ненасыщенный, участок. При этом, начиная с точки а (рис. 9-15), дальнейшее уменьшение сопротивления нагрузки RНГ, присоединенной к зажимам машины, не только не вызывает увеличения I, а наоборот, происходит уменьшение I, так как U падает быстрее RНГ.

Работа машины на ветви аб характеристики несколько неустойчива и имеется склонность самопроизвольного изменения I.

Хотя установившийся ток короткого замыкания генератора параллельного возбуждения невелик, внезапное короткое замыкание на зажимах этого генератора практически столь же опасно, как и у генератора независимого возбуждения. Объясняется это тем, что вследствие большой индуктивности обмотки возбуждения и индуктирования вихревых токов в массивных частях магнитной цепи уменьшение магнитного потока полюсов происходит медленно.

Поэтому быстро нарастающий ток якоря достигает значений Iк = (5 ÷ 15)IН.

Регулировочная характеристика iВ = f (I) при U = const и n = const и нагрузочная характеристика U = f(iВ) при I = const и п = const снимаются так же, как и у генератора независимого возбуждения. Так как iB и RaiB малы, то падение напряжения от iВ в цепи якоря практически не оказывает влияния на напряжение на зажимах генератора. Поэтому указанные характеристики получаются практически такими же, как и у генератора независимого возбуждения.

В заключение можно отметить, что характеристики и свойства генераторов независимого и параллельного возбуждения мало отличаются друг от друга. Единственное заметное отличие заключается в некотором расхождении внешних характеристик в пределах от I = 0 до I = IН. Более сильное расхождение этих характеристик при I >> IН не имеет значения, поскольку в таких режимах машины в условиях эксплуатации не работают.

Генераторы последовательного возбуждения

В генераторах последовательного возбуждения (см. рис. 9-1, в) iB = Ia= I и поэтому при п = const имеются только две независимые переменные: U и I. Вследствие этого такой генератор имеет только одну характеристику, а именно внешнюю U = f (I) при п = const (рис. 9-17, кривая 1). При увеличении I растет поток Фδ и э. д. с. Еа. Поэтому в соответствии с равенствами (9-11) и (9-14) с ростом I сначала U растет линейно, а при достижении насыщения рост U замедляется. При весьма больших I напряжение будет снова уменьшаться вследствие большой реакции якоря и большого падения напряжения RaI.

Характеристики холостого хода, короткого замыкания и другие могут быть сняты только при отсоединении обмотки возбуждения от якоря и питании её от постороннего источника тока, как у генератора независимого возбуждения, причем источник должен иметь низкое напряжение и быть рассчитанным не большой ток.

При коротком замыкании генератора последовательного возбуждения возникает чрезвычайно большой ток. Так как напряжение генератора последовательного возбуждения сильно изменяется с изменением нагрузки, то он не пригоден для питания большинства потребителей и применяется только в некоторых специальных установках.

Генераторы смешанного возбуждения

Генератор смешанного возбуждения самовозбуждается так же, как и генератор параллельного возбуждения, и их х. х. х. аналогичны. Характеристику короткого замыкания генератора смешанного возбуждения можно снять только при питании параллельной обмотки возбуждения от постороннего источника, если действие последовательной обмотки является встречным, так как при согласном действии обмоток возбуждения возникает недопустимо большой ток короткого замыкания.

Снятие внешней, регулировочной и нагрузочной характеристик генератора смешанного возбуждения производится так же, как и у генератора параллельного возбуждения.

Нагрузочная характеристика представляет собой зависимость напряжения U от тока параллельной обмотки возбуждения, поэтому при согласном включении последовательной обмотки нагрузочная характеристика генератора смешанного возбуждения будет расположена выше нагрузочной характеристики генератора независимого или параллельного возбуждения.

На рис. 9-19, а и б произведено сопоставление внешних и регулировочных характеристик генераторов различных типов. Генератор смешанного возбуждения с согласным включением последовательной обмотки возбуждения имеет самую благоприятную внешнюю характеристику. Его напряжение при надлежащем выборе н. с. последовательной обмотки мало изменяется с изменением нагрузки.

У генератора смешанного возбуждения с встречным включением последовательной обмотки возбуждения действие последней эквивалентно увеличению размагничивающего действия реакции якоря. Вследствие этого с увеличением нагрузки напряжение генератора сильно падает. Поэтому этот генератор применяется редко.

Генератор с тремя обмотками возбуждения. В ряде случаев требуется, чтобы внешняя характеристика генератора имела вид, изображенный на рис. 11-1, а. При характеристике этого вида в широком диапазоне изменения напряжения U ток I изменяется мало и близок к току короткого замыкания IК. Такая круто падающая внешняя характеристика желательна, например, в случае электрической дуговой сварки, так как при этом ток в дуге мало зависит от ее длины и короткое замыкание (соприкосновение электрода со свариваемым изделием) не опасно. Генераторы с такой характеристикой целесообразно использовать также для питания по схеме Г—Д электродвигателя механизма, работающего на упор, например экскаватора. В этом случае при застревании и остановке механизма ток и момент двигателя будут ограничены, в результате чего исключается возможность повреждения механизма или машины.

Характеристику вида рис. 11-1, а можно получить в генераторе с тремя обмотками возбуждения: 1) независимой, 2) параллельной и 3) последовательной (рис. 11, б), н. с. которой направлена навстречу н. с. первых двух обмоток.

Генераторы с тремя обмотками возбуждения в настоящее время применяются в мощных экскаваторах с электрическим приводом, на тепловозах для питания тяговых двигателей, а также и ряде других случаев.

ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Общие сведения о двигателях постоянного тока

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рис. 9-1). В двигателях независимого возбуждения токи якоря Ia и нагрузки I равны: I = Iа, в двигателях параллельного и смешанного возбуждения I = Ia + iB и в двигателях последовательного возбуждения I = Ia = IВ. С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования величины тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы.

Уравнение вращающих моментов.

Электромагнитный момент двигателя

который является движущим и действует в сторону вращения, расходуется на уравновешивание тормозящих моментов:

1) момента M0 соответствующего потерям магнитным, добавочным и механическим, покрываемым за счет механической мощности;

2) МВмомента нагрузки на валу, создаваемого рабочей машиной или механизмом;

3) МДИН — динамического момента. При этом

Таким образом,

или

где

является статическим моментом сопротивления.

При установившемся режиме работы, когда n = const и поэтому МДИН = 0

Э.д.с. якоря. Уравнения напряжения и тока.

Обозначим буквой N число активных проводников обмотки якоря, p – число пар полюсов, a – число параллельных ветвей обмотки якоря.

Тогда э. д. с. якоря Ea будет определяться как:

или

где

– постоянная для каждой машины величина.

Если вместо величины п ввести в формулу (4-2) угловую скорость вращения

то получим

где

Как следует из выражений (4-3) и (4-6), э. д. с. Еa пропорциональна величине основного магнитного потока и скорости вращения и не зависит от формы кривой распределения индукции в воздушном зазоре.

В двигателях направление действия э. д. с. якоря Еа противоположно направлению тока якоря Ia, и поэтому Еа называется также противоэлектродвижущей силой якоря.

Уравнение напряжения для цепи якоря двигателя можно записать следующим образом:

Здесь Ra — полное сопротивление цепи якоря. В режиме двигателя всегда U > Еа. Из равенства (10-4) следует, что

где, согласно выражению (4-3),

Скорость вращения и механические характеристики. Решая уравнение (10-4) совместно с (10-6) относительно n, находим уравнение скоростной характеристики п = f (Iа) двигателя:

Момент М можно определить по формуле

Определив отсюда значение Iа и подставив его в (10-7), получим уравнение механической характеристики п = f (M) двигателя:

которое определяет зависимость скорости вращения двигателя от развиваемого момента вращения.

Вид механической характеристики п = f (М) или М = f (п) при U = const зависит от того, как с изменением нагрузки или М изменяется поток машины Фδ, и различен для двигателей с различными способами возбуждения. Это же справедливо и для скоростных характеристик.

Пуск двигателей постоянного тока

При пуске двигателя в ход необходимо: 1) обеспечить надлежащую величину пускового момента и условия для достижения необходимой скорости вращения; 2) предотвратить возникновение чрезмерного пускового тока, опасного для двигателя.

Возможны три способа пуска двигателя в ход: 1) прямой пуск, когда цепь якоря приключается непосредственно к сети на ее полное напряжение; 2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря; 3) пуск при пониженном напряжении цепи якоря.

При n = 0 также Ea = 0, поэтому

В нормальных машинах Ra мало, и поэтому при прямом пуске с U = UН ток якоря недопустимо велик:

Вследствие этого прямой пуск применяется только для двигателей мощностью до нескольких сотен Ватт, у которых Ra относительно велико и поэтому при пуске Ia ≤ (4 ÷ 6) 1Н, а процесс пуска длится не более 1-2 с.

Самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений (рис. 10-2).

При этом имеем

а в начальный момент пуска, при п = 0,

где RП —сопротивление пускового реостата, или пусковое сопротивление. Величина RП подбирается так, чтобы в начальный момент пуска было Iа = (1,4 ÷ 1,7) IН (в малых машинах до (2,0 ÷ 2,5) IН).

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рис. 10-2, а).

Перед пуском (t < 0) подвижный контакт П пускового реостата стоит на холостом контакте 0 и цепь двигателя разомкнута. В начальный момент пуска (t = 0) подвижный контакт П с помощью рукоятки переводится на контакт 1, и через якорь пойдет ток Iа, определяемый равенством (10-12). Цепь обмотки возбуждения ОВ подключается к неподвижной контактной дуге д по которой скользит контакт П, чтобы во время пуска цепь возбуждения все время была под полным напряжением. Это необходимо для того, чтобы iB и Фδ при пуске были максимальными и постоянными, так как при этом при данных значениях Iа развивается наибольший момент М. С этой же целью регулировочный реостат возбуждения ставится при пуске в положение RРВ = 0.

При положении контакта П пускового реостата на контакте 1 (I = 0) возникают токи 1а и iB, а также момент М, и если М > МСТ, то двигатель придет во вращение и скорость п будет расти со значения п = 0 (рис. 10-3). При этом в якоре будет индуктироваться э. д. с. Еa ~ п и Iа и М, а также скорость нарастания п будут уменьшаться. Изменение этих величин при MСТ = const происходит по экспоненциальному закону.

Когда Iа достигнет значения Ia мин = (1,1 ÷ 1,3) IН, контакт П пускового реостата переведется на контакт 2. Вследствие уменьшения RП ток Iа ввиду малой индуктивности цепи якоря почти мгновенно возрастет, М также увеличится, п будет расти быстрее и в результате увеличения Еа величины Iа и М снова будут уменьшаться (рис. 10-3), Подобным же образом развивается процесс пуска при последовательном переключении реостата в положения 3, 4 и 5, после чего двигатель достигает установившегося режима работы со значениями Iа и п, определяемыми условиями М = МСТ.

При пуске на холостом ходу МСТ = М0. Ток Iа = Iа0 в этом случае мал и составляет обычно 3—8% от IН.

Заштрихованные на рис. 10-3 ординаты представляют собой значения избыточного, или динамического, момента

под воздействием которого происходит увеличение п.

Количество ступеней пускового реостата и величины их сопротивлений рассчитываются таким образом, чтобы при надлежащих интервалах времени переключения ступеней максимальные и минимальные значения Iа на всех ступенях получились одинаковыми. По условиям нагрева ступени реостата рассчитываются на кратковременный режим работы.

Остановка двигателя производится путем его отключения от сети с помощью рубильника или другого выключателя. Схема рис. 10-2 составлена так, чтобы при отключении двигателя цепь обмотки возбуждения не размыкалась, а оставалась замкнутой через якорь. При этом ток в обмотке возбуждения после отключения двигателя уменьшается до нуля не мгновенно, а с достаточно большой постоянной времени. Благодаря этому предотвращается индуктирование в обмотке возбуждения большой э. д. с. самоиндукции, которая может повредить изоляцию этой обмотки.

Автоматизировать переключение пускового реостата неудобно. Поэтому в автоматизированных установках вместо пускового реостата используют пусковые сопротивления (рис. 10-2, б), которые поочередно шунтируются контактами К1, К2 и КЗ автоматически работающих контакторов.

Ни в коем случае нельзя допускать разрыва цепи параллельного возбуждения. В этом случае поток возбуждения исчезает не сразу, а поддерживается индуктируемыми в ярме вихревыми токами. Однако этот поток будет быстро уменьшаться и скорость п будет сильно увеличиваться («разнос» двигателя). В результате ток якоря значительно возрастет и возникнет круговой огонь, вследствие чего возможно повреждение машины, и поэтому, в частности, в цепях возбуждения не ставят предохранителей и выключателей.

Пуск двигателей последовательного и смешанного возбуждения производится аналогичным образом. Схема пуска двигателя смешанного возбуждения ничем не отличается от схемы пуска двигателя параллельного возбуждения (рис. 10-2), а схема пуска двигателя последовательного возбуждения упрощается за счет исключения параллельной цепи возбуждения. Для изменения направления вращения (реверсирования) двигателя необходимо изменить направление тока в якоре (вместе с добавочными полюсами и компенсационной обмоткой) или в обмотке (обмотках) возбуждения.

Регулирование скорости вращения и устойчивость работы двигателя

Способы регулирования скорости вращения двигателей постоянного тока.

Возможны три способа регулирования скорости вращения.

1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока Фδ, т. е. тока возбуждения iВ.

С уменьшением Фδ скорость возрастает. Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Фδ, т. е. с наименьшей величиной n. Поэтому практически можно только уменьшать Фδ.

Следовательно, рассматриваемый способ позволяет регулировать скорость вверх от номинальной. При таком регулировании к. п. д. двигателя остается высоким, так как мощность возбуждения мала, в частности мала мощность реостатов для регулирования тока возбуждения. К тому же при уменьшении iВ мощность возбуждения UiB уменьшается.

Верхний предел регулирования скорости вращения ограничивается механической прочностью машины и условиями ее коммутации.

При высоких скоростях коммутация ухудшается вследствие увеличения вибрации щеточного аппарата, неустойчивости щеточного контакта и возрастания реактивной э. д. с., а также вследствие увеличения максимального напряжения между коллекторными пластинами в результате ослабления основного поля и усиления при этом искажающего влияния поперечной реакции якоря.

2. Другой способ регулирования скорости заключается во включении последовательно в цепь якоря реостата или регулируемого сопротивления Rрa.

Этот способ дает возможность регулировать скорость вниз от номинальной и связан со значительными потерями в сопротивлении Rpa и понижением к. п. д. Данный способ применяется в основном для двигателей небольшой мощности, а для более мощных двигателей используется редко и только кратковременно (пуско-наладочные режимы и т. д.).

3. Регулирование скорости осуществляется также путем регулирования напряжения цепи якоря. Так как работа двигателя при U > UН недопустима, то данный способ дает возможность регулировать скорость также вниз от номинальной. К. п. д. двигателя при этом остается высоким, так как никаких добавочных источников потерь в схему двигателя не вносится.

Однако в этом случае необходим отдельный источник тока с регулируемым напряжением, что удорожает установку.

Условия устойчивости работы двигателя. При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и т. д.). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы, вследствие чего возникает момент МДИН и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях его работы, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы (например, скорость вращения, ток якоря и т. д.). Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы.

При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (п, Iа и т. д.) в каком-либо одном направлении, либо приводят к колебательному режиму работы с возрастанием амплитуд колебаний n, Ia и т. д. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Регулирование скорости вращения и устойчивость работы двигателя

Способы регулирования скорости вращения двигателей постоянного тока.

Возможны три способа регулирования скорости вращения.

1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока Фδ, т. е. тока возбуждения iВ.

С уменьшением Фδ скорость возрастает. Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Фδ, т. е. с наименьшей величиной n. Поэтому практически можно только уменьшать Фδ.

Следовательно, рассматриваемый способ позволяет регулировать скорость вверх от номинальной. При таком регулировании к. п. д. двигателя остается высоким, так как мощность возбуждения мала, в частности мала мощность реостатов для регулирования тока возбуждения. К тому же при уменьшении iВ мощность возбуждения UiB уменьшается.

Верхний предел регулирования скорости вращения ограничивается механической прочностью машины и условиями ее коммутации.

При высоких скоростях коммутация ухудшается вследствие увеличения вибрации щеточного аппарата, неустойчивости щеточного контакта и возрастания реактивной э. д. с., а также вследствие увеличения максимального напряжения между коллекторными пластинами в результате ослабления основного поля и усиления при этом искажающего влияния поперечной реакции якоря.

2. Другой способ регулирования скорости заключается во включении последовательно в цепь якоря реостата или регулируемого сопротивления Rрa.

Этот способ дает возможность регулировать скорость вниз от номинальной и связан со значительными потерями в сопротивлении Rpa и понижением к. п. д. Данный способ применяется в основном для двигателей небольшой мощности, а для более мощных двигателей используется редко и только кратковременно (пуско-наладочные режимы и т. д.).

3. Регулирование скорости осуществляется также путем регулирования напряжения цепи якоря. Так как работа двигателя при U > UН недопустима, то данный способ дает возможность регулировать скорость также вниз от номинальной. К. п. д. двигателя при этом остается высоким, так как никаких добавочных источников потерь в схему двигателя не вносится.

Однако в этом случае необходим отдельный источник тока с регулируемым напряжением, что удорожает установку.

Условия устойчивости работы двигателя. При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и т. д.). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы, вследствие чего возникает момент МДИН и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях его работы, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы (например, скорость вращения, ток якоря и т. д.). Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы.

При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (п, Iа и т. д.) в каком-либо одном направлении, либо приводят к колебательному режиму работы с возрастанием амплитуд колебаний n, Ia и т. д. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Двигатели параллельного возбуждения

Естественные скоростная и механическая характеристики. Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (10-7) и (10-9) при U = const и iB = const. При отсутствии дополнительного сопротивления в цепи якоря характеристики называются естественными.

Если щетки находятся на геометрической нейтрали, при увеличении Ia поток Фδ несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скорость п будет стремиться возрасти. С другой стороны, падение напряжения RaIa вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис. 10-6; 1 — при преобладании влияния RaIa; 2 — при взаимной компенсации влияния RaIa и уменьшения Фδ; 3 — при преобладании влияния уменьшения Фδ.

Ввиду того, что изменение Фδ относительно мало, механические характеристики п = f(М) двигателя параллельного возбуждения, определяемые равенством (10-9), при U = const и iВ = const совпадают по виду с характеристиками п = f (Ia) (рис. 10-6). По этой же причине эти характеристики практически прямолинейны.

Характеристики вида 3 (рис. 10-6) неприемлемы по условиям устойчивости работы. Поэтому двигатели параллельного возбуждения изготовляются со слегка падающими характеристиками вида 1 (рис. 10-6). В современных высокоиспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рис. 10-6) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, н. с. которой составляет до 10% от н. с. параллельной обмотки возбуждения. При этом уменьшение Фδ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей, а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.

Изменение скорости вращения Δn (рис, 10-6) при переходе от холостого хода (Iа =Ia0) к номинальной нагрузке (Iа = IаН) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2—8% от nН. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и пр.).

Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения RР.В. При отсутствии добавочного сопротивления в цепи якоря (Rpa = 0) и U = const характеристики п = f (Ia) и п = f (M), определяемые равенствами (10-7) и (10-9), для разных значений Rр.в, iB или Фδ имеют вид, показанный на рис. 10-7. Все характеристики п = f (Ia) сходятся на оси абсцисс (п = 0) в общей точке при весьма большом токе Ia, который, согласно выражению (10-5), равен

Iа = U/Ra.

Однако механические характеристики пересекают ось абсцисс в разных точках.

Нижняя характеристика на рис. 10-7 соответствует номинальному потоку. Значения п при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой MСТ = f (п) для рабочей машины, соединенной с двигателем (штриховая линия на рис. 10-7).

Точка холостого хода двигателя = Мо, Ia = Ia0) лежит несколько правее оси ордидат на рис. 10-7. С увеличением скорости вращения п вследствие увеличения механических потерь Мо и Ia0 также увеличиваются. Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения п, то Еа будет увеличиваться, а Iа к М будут уменьшаться. При Iа = 0 и М = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости Iа и М изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рис. 10-7 левее оси ординат).

Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1 : 2. Изготовляются также двигатели с регулированием скорости таким способом в пределах до 1 : 5 или даже 1 : 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики. Если последовательно в цепь якоря включить добавочное сопротивление Rpa (рис. 10-8, а), то получим

Сопротивление Rра может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.

Характеристики п = f (М) и п = f (Ia) для различных значений Rpa = const при U = const и iВ = const изображены на рис. 10-8, б (Rpa1 < Rpa2 < Rpa3). Верхняя характеристика (Rpa = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (п = 0) в точке с

Продолжения этих характеристик под осью абсцисс на рис. 10-8 соответствуют торможению двигателя противовключением. В этом случае п < 0, э. д. с. Еа имеет противоположный знак и складывается с напряжением сети U, вследствие чего

а момент двигателя М действует против направления вращения и является, поэтому, тормозящим.

Если в режиме холостого хода (Iа = 1a0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим 1а = 0, а затем Iа изменит направление и машина перейдет в режим генератора (участки характеристик на рис. 10-8, б слева от оси ординат).

Как видно из рис. 10-8, б, при включении Rpa характеристики становятся менее жесткими, а при больших величинах Rpa — круто падающими, или мягкими.

Если кривая момента сопротивления MСТ = f (п) имеет вид, изображенный на рис. 10-8, 6 штриховой линией, то значения п при установившемся режиме работы для каждого значений Rpa определяются точками пересечения соответствующих кривых. Чем больше Rpa, тем меньше п и ниже к. п. д.

Регулирование скорости посредством изменения напряжения якоря может осуществляться с помощью агрегата «генератор—двигатель» (Г — Д), называемого также агрегатом Леонарда (рис. 10-9). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и т. п.) вращает с постоянной скоростью генератор постоянного тока Г. Якорь генератора непосредственно приключен к якорю двигателя постоянного тока Д, который служит приводом рабочей машины РМ. Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника — сети постоянного тока (рис. 10-9) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД. Регулирование тока возбуждения генератора i должно производиться практически от нуля (на рис. 10-9 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя надо изменить полярность генератора (на рис. 10-9 с помощью переключателя П).

Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном i и iВГ = 0 производят пуск первичного двигателя ПД. Затем плавно увеличивают iВГ и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U = UН, можно получить любые скорости вращения двигателя до n = nН. Дальнейшее увеличение п возможно путем уменьшения iBД. Для реверсирования двигателя уменьшают iВГ до нуля, переключают ОВГ и снова увеличивают iВГ от значения iВГ = 0.

Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г—Д—М, или агрегат Леонарда — Ильгнера). В этом случае при понижении п во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д.

В последнее время все чаще двигатель ПД и генератор Г заменяют полупроводниковым выпрямителем с регулируемым напряжением. В этом случае рассматриваемый агрегат называют также вентильным (тиристорным) приводом.

Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах — до 1 : 10 и более (крупные металлорежущие станки, прокатные станы и т. д.).

В последнее время все больше распространяется так называемое импульсное регулирование двигателей постоянного тока. При этом цепь якоря двигателя питается от источника постоянного тока с постоянным напряжением через тиристоры, которые периодически, с частотой 1000—3000 Гц включаются и отключаются. Чтобы сгладить при этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени продолжительности всего цикла. Таким образом, импульсный метод позволяет регулировать скорость вращения двигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.

Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.

Рабочие характеристики представляют собой зависимости потребляемой мощности Pl, потребляемого тока I, скорости n, момента М и к. п. д. η от полезной мощности Р2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рис, 10-10.

Одновременно с увеличением мощности на валу Р2 растет и момент на валу М. Поскольку с увеличением Р2 и М скорость п несколько уменьшается, то М = Р2/п растет несколько быстрее Р2. Увеличение Р2 и М, естественно, сопровождается увеличением тока двигателя I. Пропорционально I растет также потребляемая из сети мощность Р1. При холостом ходе 2 = 0) к. п. д. η = 0, затем с увеличением Р2 сначала η быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря η снова начинает уменьшаться.

Двигатели последовательного возбуждения

Естественные скоростная и механическая характеристики, область применения.

В двигателях последовательного возбуждения ток якоря одновременно является также током возбуждения: iВ = Ia = I. Поэтому поток Фδ изменяется в широких пределах и можно написать, что

Коэффициент пропорциональности kФ в значительном диапазоне нагрузок, при I < 1Н является практически постоянным, и лишь при I > (0,8 ÷ 0,9) IН вследствие насыщения магнитной цепи kФ начинает несколько уменьшаться.

При использовании соотношения (10-18) для двигателя последовательного возбуждения вместо выражений (10-7), (10-9) и (10-8) получим

Скоростная характеристика двигателя, представленная на ряс. 10-11, является мягкой и имеет гиперболический характер. При kФ = const вид кривой п = f (I) показан штриховой линией. При малых I скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения, за исключением самых маленьких, па холостом ходу не допускается, а использование ременной передачи неприемлемо. Обычно минимально допустимая нагрузка Р2 = (0,2 ÷ 0,25)PH.

Естественная механическая характеристика двигателя последовательного возбуждения п = f (M) показана на рис, 10-13 (кривая 1).

Поскольку у двигателей параллельного возбуждения М ~ I, а у двигателей последовательного возбуждения приблизительно М ~ I2 и при пуске допускается I = (1,5 ÷ 2,0) IН, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения. Кроме того, у двигателей параллельного возбуждения п ≈ const, а у двигателей последовательного возбуждения, согласно выражениям (10-19) и (10-20), приблизительно (при Ra = 0)

Поэтому у двигателей параллельного возбуждения

а у двигателей последовательного возбуждения

Таким образом, у двигателей последовательного возбуждения при изменении момента нагрузки MСТ = М в широких пределах мощность изменяется в меньших пределах, чем у двигателей параллельного возбуждения.

Поэтому для двигателей последовательного возбуждения менее опасны перегрузки по моменту. В связи с этим двигатели последовательного возбуждения имеют существенные преимущества в случае тяжелых условий пуска и изменения момента нагрузки в широких пределах. Они широко применяются для электрической тяги (трамвай, метро, троллейбусы, электровозы и тепловозы на железных дорогах) и в подъемно-транспортных установках.

Отметим, что при повышении скорости вращения двигатель последовательного возбуждения в режим генератора не переходит. На рис. 10-11 это отражено в том, что характеристика п = f (I) оси ординат не пересекает. Физически это объясняется тем, что при переходе в режим генератора, при заданном направлении вращения и заданной полярности напряжения, направление тока должно изменяться на обратное, а направление э. д. с. Еа и полярность полюсов должны сохраняться неизменными, однако последнее при изменении направления тока в обмотке возбуждения невозможно. Поэтому для перевода двигателя последовательного возбуждения в режим генератора необходимо переключить концы обмотки возбуждения.

Регулирование скорости посредством ослабления поля.

Регулирование п посредством ослабления поля производится либо путем шунтирования обмотки возбуждения некоторым сопротивлением RШ.В (рис. 10-12, а), либо уменьшением числа включенных в работу витков обмотки возбуждения.

В последнем случае должны быть предусмотрены соответствующие выводы из обмотки возбуждения.

Так как сопротивление обмотки возбуждения RВ и падение напряжения на нем малы, то RШ.В также должно быть мало. Потери в сопротивлении RШ.В поэтому тоже малы, а суммарные потери на возбуждение при шунтировании даже уменьшаются. Вследствие этого к. п. д. двигателя остается высоким, и такой способ регулирования широко применяется на практике.

При шунтировании обмотки возбуждения ток возбуждения с величины I уменьшается до

и скорость п соответственно увеличивается. Выражения для скоростной и механических характеристик при этом получим, если в равенствах (10-19).и (10-20) заменим kФ на kФkО.В, где

представляет собой коэффициент ослабления возбуждения. При регулировании скорости изменением числа витков обмотки возбуждения

На рис. 10-13 показаны (кривые 1, 2, 3) характеристики п = f (M) для этого случая регулирования скорости при нескольких значениях kО.В (значению kО.В = 1 соответствует естественная характеристика 1, kО.В = 0,6 — кривая 2 и kО.В = 0,3 — кривая 3). Характеристики даны в относительных единицах и соответствуют случаю, когда kФ = const и Ra* = 0,1.

Регулирование скорости путем шунтирования якоря. При шунтировании якоря (рис, 10-12, б) ток и поток возбуждения возрастают, а скорость уменьшается. Так как падение напряжения RВI мало и поэтому можно принять RВ = 0, то сопротивление Rш.а практически находится под полным напряжением сети, его величину должна быть значительной, потери в нем будут велики и к. я. д. сильно уменьшится.

Кроме того, шунтирование якоря эффективно только тогда, когда магнитная цепь не насыщена. В связи с этим шунтирование якоря на практике используется редко.

На рис. 10-13 кривая 4 представляет собой характеристику п = f (M) при

Регулирование скорости включением сопротивления в цепь якоря (рис. 10-12, в).

Этот способ позволяет регулировать п вниз от номинального значения. Так как одновременно при этом значительно уменьшается к. п. д., то такой способ регулирования находит ограниченное применение.

Выражения для скоростной и механической характеристик в этом случае получим, если в равенствах (10-20) и (10-21) заменим Ra на Ra + Rpa. Характеристика п = f (M) для такого способа регулирования скорости при Rра* = 0,5 изображена на рис. 10-13 в виде кривой 5.

Регулирование скорости изменением напряжения. Этим способом можно регулировать п вниз от номинального значения с сохранением высокого к. п. д. Рассматриваемый способ регулирования широко применяется в транспортных установках, где на каждой ведущей оси устанавливается отдельный двигатель и регулирование осуществляется путем переключения двигателей с параллельного включения в сеть на последовательное. На рис. 10-13 кривая 6 представляет собой характеристику п = f (M) для этого случая при U = 0,5 UН.

Двигатели смешанного возбуждения

При встречном включении последовательной обмотки возбуждения двигателя смешанного возбуждения поток Фδ с увеличением нагрузки будет уменьшаться. Вследствие этого характеристики n = f (I) и п = f (М) будут иметь характер кривой 3 на рис. 10-6. Так как работа при этом обычно неустойчива, то двигатели с встречным включением последовательной обмотки возбуждения не применяются.

При согласном включении последовательной обмотки возбуждения поток Фδ с увеличением нагрузки возрастает. Поэтому такой двигатель смешанного возбуждения имеет более мягкую механическую характеристику по сравнению с двигателем параллельного возбуждения, но более жесткую по сравнению с двигателем последовательного возбуждения (рис, 10-15). В зависимости от назначения двигателя доля последовательной обмотки в создании полной н. с, возбуждения может меняться в широких пределах.

Скорость вращения двигателей смешанного возбуждения обычно регулируется так же, как и в двигателях параллельного возбуждения, хотя в принципе можно использовать также способы, применяемые в двигателях последовательного возбуждения.

Двигатели смешанного возбуждения применяются в условиях, когда требуется большой пусковой момент, быстрое ускорение при пуске и допустимы значительные изменения скорости вращения при изменении нагрузки. Эти двигатели используются также в случаях, когда момент нагрузки изменяется в широких пределах, так как при этом мощность двигателя снижается, как и у двигателя с последовательным возбуждением. В связи с этим двигатели смешанного возбуждения применяются для привода на постоянном токе компрессоров, строгальных станков, печатных машин, прокатных станов, подъемников и т. д.

В последнее время двигатели смешанного возбуждения используются также для электрической тяги, так как при этом легче, чем в случае применения двигателей последовательного возбуждения, осуществляется торможение подвижных составов с возвращением энергии в контактную сеть постоянного тока путем перевода машины в генераторный режим работы.

ОСНОВНЫЕ СВЕДЕНИЯ О ТРАНСФОРМАТОРАХ

Принцип действия и виды трансформаторов. Принцип действия.

Трансформатор представляет собой электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения-той же частоты.

В простейшем случае (рис. 12-1) трансформатор имеет одну первичную обмотку 1, к которой подводится электрическая энергия, и одну вторичную обмотку 2, от которой энергия отводится к потребителю (нагрузке). Передача энергии из одной обмотки в другую производится путем электромагнитной индукции. Для усиления электромагнитной связи между обмотками они обычно располагаются на замкнутом ферромагнитном сердечнике 3. При частоте f < 150 Гц сердечник изготовляется из листов электротехнической стали толщиной 0,35—0,50 мм. При более высоких частотах применяется более тонкая листовая сталь. При частоте порядка 100 000 Гц и выше потери на гистерезис и вихревые токи в подобном сердечнике становятся чрезвычайно большими, и в этом случае применяются трансформаторы без ферромагнитного сердечника (так называемые воздушные трансформаторы).

Высококачественные трансформаторы весьма малой мощности для радиотехнических, счетно-решающих и других устройств изготовляются также с сердечниками из ферритов, которые представляют собой особый вид магнитодиэлектриков с малыми магнитными потерями.

При подключении первичной обмотки трансформатора (рис. 12-1) к сети с синусоидальным напряжением U1 в обмотке возникает ток I1, который создает синусоидально изменяющийся магнитный поток Ф, замыкающийся по сердечнику. Поток Ф индуктирует э. д. с. как в первичной, так и во вторичной обмотке. При подключении к вторичной обмотке нагрузки в этой обмотке возникает вторичный ток I2 и на ее зажимах устанавливается некоторое напряжение U2. Результирующий магнитный поток сердечннка Фс создается током обеих обмоток.

Электрические соотношения в идеальном трансформаторе. Назовем идеальным такой трансформатор, в котором: 1) отсутствуют потери энергии (сопротивления обмоток и потери в стали сердечника равны нулю), 2) магнитная проницаемость стали сердечника μс = ∞ и в листах стали сердечника нет разъемов и стыков; 3) все линии магнитной индукции проходят целиком по сердечнику и каждая линия сцепляется со всеми витками первичной (w1) и вторичной (w2) обмоток. Отметим, что при соблюдении последнего условия электромагнитная связь между первичной и вторичной цепями является полной и коэффициент электромагнитной связи обмоток трансформатора

равен единице. Здесь L11 и L22 — собственные индуктивности, а М — взаимная индуктивность обмоток.

Э. д. с. первичной и вторичной обмоток такого трансформатора при синусоидальных переменных токах соответственно равны

где Фс—амплитуда магнитного потока трансформатора.

Действующие значения этих э. д. с.

Так как в идеальном трансформаторе падения напряжения отсутствуют, то

На основании выражений. (12-3) и (12-4)

или

где

называется коэффициентом трансформации трансформатора.

Поскольку в идеальном трансформаторе потери активной и реактивной энергии отсутствуют, то

откуда

или

Таким образом, в идеальном трансформаторе первичное и вторичное напряжения прямо пропорциональны, а первичный и вторичный токи обратно пропорциональны числам витков соответствующих обмоток. В реальном трансформаторе полученные соотношения несколько нарушаются, однако в трансформаторах с ферромагнитными сердечниками эти отклонения при нагрузках, близких к номинальным, относительно малы.

Виды трансформаторов. Трансформатор с одной первичной и с одной вторичной обмоткой называется двухобмоточным. Во многих случаях применяются трансформаторы с несколькими первичными или вторичными обмотками. Такие трансформаторы называются многообмоточными.

Чаще всего применяются однофазные и трехфазные трансформаторы. Трансформаторы с другим числом фаз используются в специальных устройствах.

В зависимости от назначения трансформаторы имеют некоторые особенности в конструкции и режимах работы.

Трансформаторы, служащие для преобразования энергии переменного тока в электрических сетях энергетических систем (на электростанциях и подстанциях, промышленных предприятиях, в городских сетях, в сельском хозяйстве и т. д.), называются силовыми. Частота тока силовых трансформаторов в России равна 50 Гц, а в США и в некоторых других странах 60 Гц. Силовые трансформаторы представляют собой наиболее распространенный и наиболее важный класс трансформаторов. Кроме этого, имеется целый ряд трансформаторов специального назначения: выпрямительные, сварочные, измерительные и др.

Силовые трансформаторы бывают масляные и сухие. В масляных трансформаторах сердечник с обмотками помещают в бак с трансформаторным маслом, которое выполняет одновременно роль электрической изоляции и охлаждающего агента. Однако трансформаторное масло является горючим, в связи с чем при аварии таких трансформаторов существует определенная опасность возникновения пожара. Поэтому в общественных и жилых зданиях, а также в ряде других случаев применяются сухие трансформаторы, охлаждение которых осуществляется воздухом. В паспортных табличках силового трансформатора указываются следующие данные: 1) номинальная полная мощность SH (кВА); 2) номинальные линейные напряжения обмоток UЛ.Н(В, кВ); 3) номинальные линейные токи IЛ.Н (А); 4) номинальная частота f (Гц); 5) число фаз т; 6) схема и группа соединения обмоток; 7) напряжение короткого замыкания uК; 8) режим работы (длительный, кратковременный); 9) способ охлаждения.

К настоящему времени построены силовые трансформаторы единичной мощностью до 1300 МВА и напряжением до 750 кВ.

Магнитопроводы трансформаторов

Виды магнитопроводов.

По конструкции магнитопровода трансформаторы подразделяются на стержневые и броневые.

Магнитолровод, или сердечник, однофазного стержневого трансформатора (рис. 12-2, а) имеет два стержня С, на которых размещаются обмотки, и два ярма Я, которые служат для создания замкнутого магнитопровода. Каждая из двух обмоток (1 и 2) состоит из двух частей, расположенных на двух стержнях, причем эти части соединяются либо последовательно, либо параллельно. При таком расположении первичная и вторичная обмотки находятся близко друг от друга, что приводит к увеличению коэффициента электромагнитной связи.

Однофазный трансформатор броневой конструкции (рис. 12-2, б) имеет один стержень с обмотками и развитое ярмо, которое частично закрывает обмотки подобно «броне».

Для преобразования, или трансформации, трехфазного тока можно использовать три однофазных трансформатора, обмотки которых соединяются по схеме звезды или треугольника и присоединяются к трехфазной сети. Такое устройство называется трехфазной трансформаторной группой или групповым трансформатором. Чаще, однако, применяются трехфазные трансформаторы с общим для всех фаз сердечником, так как такие трансформаторы компактнее и дешевле.

Сердечники силовых трансформаторов собираются из листов электротехнической стали толщиной 0,35 или 0,5 мм марок Э41, Э42, Э43 или Э310, Э320, Э33О. Применение холоднокатаной стали в последние годы все больше расширяется.

Межлистовая изоляция осуществляется путем односторонней оклейки листов стали изоляционной бумагой толщиной 0,03 мм или двустороннего покрытия изоляционным масляным лаком.

Индукции в стержнях трансформаторов мощностью 5 кВm и выше находятся в пределах 1,2— 1,45 Тл для горячекатаных сталей и 1,5—1,7 Тл для холоднокатаных сталей у масляных трансформаторов и соответственно 1,0—1,2 Тл и 1,1—1,5 Тл у сухих трансформаторов.

Обмотки трансформаторов

Конструкция обмоток трансформаторов должна удовлетворять условиям высокой электрической и механической прочности, а также нагревостойкости. Кроме того, технология изготовления обмоток должна быть по возможности простой и недорогой, а электрические потери в обмотках должны находиться в установленных пределах. Конструкции обмоток в зависимости от номинального тока и номинального напряжения обмотки весьма разнообразны.

Обмотки изготовляются из медного, а в последнее время часто также из алюминиевого провода. Плотность тока в медных обмотках масляных трансформаторов находится в пределах 2—4,5 А/мм2, а в сухих трансформаторах 1,2—3,0 А/мм2. Верхние пределы относятся к более мощным трансформаторам. В алюминиевых обмотках плотность тока на 40—45% меньше. Для изготовления обмоток применяются круглые провода сечением 0,02—10 мм2 и прямоугольные сечением 6—60 мм2. Во многих случаях витки и катушки обмоток наматываются из определенного количества параллельных проводников.

Обмотки масляных трансформаторов изготовляются из проводов с эмалевой и хлопчатобумажной изоляцией (круглые сечения) и из проводов, изолированных двумя слоями кабельной бумаги и хлопчатобумажной пряжей (прямоугольные сечения). В сухих силовых трансформаторах применяются провода с нагревостойкой изоляцией из стекловолокна.

В процессе работы трансформатора происходит окисление, увлажнение и загрязнение масла, что сопровождается ухудшением его изоляционных свойств. Поэтому производится регулярный отбор проб масла, а также периодическая его сушка, очистка, восстановление или замена новым. В необходимых случаях производится также вакуумная сушка сердечника и обмоток трансформатора. Для этих целей предусматриваются краны и другая арматура.

Трансформаторы мощностью до 1800 кВА перевозятся в собранном виде на нормальных железнодорожных платформах. С трансформаторов мощностью более 1800 кВА и до 5600 кВА по условиям железнодорожных габаритов приходится снимать радиаторы, расширитель, выхлопную трубу и вводы на напряжение 11 кВ и выше.

Трансформаторы мощностью более 5600 кВА, весом более 50—60 т необходимо перевозить на специальных железнодорожных транспортерах, имеющих низкую нагрузочную платформу. При этом у трансформаторов больших мощностей приходится не только снимать выступающие части, но применять разъемный бак с временной транспортной крышкой небольшой высоты или даже транспортный бак с предельно уменьшенными размерами во всех трех направлениях.

Трансформаторы мощностью 200—300 МВА имеют вес около 1 кг на I кВА мощности.

Автотрансформаторы. В обычных трансформаторах первичные и вторичные обмотки имеют между собой только магнитную связь. В ряде случаев вместо таких трансформаторов экономически целесообразно применять трансформаторы, в которых первичные и вторичные обмотки имеют также электрическую связь. Такие трансформаторы называются автотрансформаторами.

В автотрансформаторе первичная обмотка w1 включается в сеть параллельно, а вторичная w2 — последовательно; Устройство обмоток и их расположение на стержнях такие же, как и в обычном трансформаторе, однако ввиду электрической связи обмоток изоляция каждой из них относительно корпуса должна быть рассчитана на напряжение сети высшего напряжения UВ.Н.

0

Автор публикации

не в сети 5 дней

apriori

0
Комментарии: 0Публикации: 183Регистрация: 18-01-2019

Добавить комментарий