Испытание кабелей

Содержание

1.Испытание кабелей

2.Нормы приемо-сдаточных испытаний силовых кабельных линий

3.Измерение сопротивления заземления

4.Проведение периодических проверок, измерений и испытаний силовых кабельных линий

5.Измерение блуждающих токов

6.Отыскание участка повреждения кабеля

7.Отыскание места повреждения кабеля

1.Испытание кабелей

Силовая кабельная линия – это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

№ п/п

Наименование материалов

Температурный коэффициент объемного расширения на 1°С при 20°С

1

Медь

50

2

Алюминий

77

3

Свинец

87

4

Полиэтилен высокого давления

0-50°С – 670 50-100°С – 1560-1650

5

Полихлорвиниловый пластикат

70-200

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Изоляция жил

Напряжение кабеля, кВ

Длительно допустимая температура жил кабеля, РС

Допустимый нагрев жил при токах короткого замыкания, °С

Бумажная пропитанная

1-6102035

80656560

200200130130

Пластмассовая:

 

 

 

поливинилхлоридныйпластикат

 

70

160

полиэтилен

 

70

130

вулканизирующийсяполиэтилен

 

90

250

Резиновая

 

65

150

Резиновая повышенной теплостойкости

 

90

250

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена – 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Коэффициент предварительной нагрузки

Прокладка кабеля

Допустимая перегрузка длительностью, час.

0,5

1

3

0,6

В землеВ воздухеВ трубах (в земле)

1,351,25

1,31,151,1

1,1 51,11,0

0,8

В землеВ воздухеВ трубах (в земле)

1,21,151,1

1,151,01,05

1,11,051,0

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента – кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

  • солончаковые;
  • известковые;
  • песчаные;
  • черноземные;
  • глинистые;
  • торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Конструктивный элемент кабеля

Материал

Буквенное обозначение

Жила

Медь Алюминий

Нет буквы А

Изоляция жил

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Поясная изоляция

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Оболочка

Свинцовая Алюминиевая гладкая Алюминиевая гофрированная Поливинилхлоридная Полиэтиленовая негорючая резина

С А Аг
В П Н

Подушка

Бумага и битум Без подушки Полиэтиленовая (шланг) Поливинилхлоридная: один слой пластмассовой ленты типа ПХВ два слоя пластмассовой ленты типа ПХВ

Нет буквы б вл2л

Броня

Стальная лента Проволока плоского сечения Проволока круглого сечения

Б
П К

Наружный кабельный покров

Кабельная пряжа Без наружного кабельного покрова Стеклянная пряжа из штапелированного волокна (негорючий кабельный покров) Полиэтиленовый шланг Поливинилхлоридный шланг

Нет буквы,ГН ШпШв

Примечание:

  1. Буквы в обозначении кабеля располагаются в соответствии с конструкцией кабеля, т.е. начиная от материала жилы и заканчивая наружным кабельным покровом.
  2. Если в конце буквенной части марки кабеля стоит буква “П”, написанная через черточку, то это означает, что кабель имеет по сечению плоскую форму, а не круглую.
  3. Обозначение контрольного кабеля отличается от обозначения силового кабеля только тем, что после материала жилы кабеля ставится буква “К”.

После букв стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее широкое применение находят кабели следующих стандартных сечений жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.

 

2. Нормы приемо-сдаточных испытаний силовых кабельных линий

Объем приемо-сдаточных испытаний.

В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний силовых кабельных линий включает следующие работы.

  1. Проверка целостности и фазировки жил кабеля.
  2. Измерение сопротивления изоляции.
  3. Испытание повышенным напряжением выпрямленного тока.
  4. Испытание повышенным напряжением промышленной частоты.
  5. Определение активного сопротивления жил.
  6. Определение электрической рабочей емкости жил.
  7. Измерение распределения тока по одножильным кабелям.
  8. Проверка защиты от блуждающих токов.
  9. Испытание на наличие нерастворенного воздуха (пропиточное испытание).
  10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.
  11. Контроль состояния антикоррозийного покрытия.
  12. Проверка характеристик масла.
  13. Измерение сопротивления заземления.

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13.

Силовые кабельные линии напряжением выше 1 кВ и до 35 кВ – по п.п.1-3, 6, 7, 11, 13, а напряжением 110 кВ и выше – в полном объеме, предусмотренным настоящей инструкцией.

Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология “прозвонки” с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил “прозвонкой” будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для “прозвонки” используют низкоомные телефонные трубки, а в качестве источника питания – батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),

Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1). Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки – поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.

 



Рис. 1. Последовательность операций при фазировке линии 10 кВ указателем напряжения типа УВНФ.

а, б – проверка исправности указателя напряжения; в – фазировка; г – проверка наличия напряжения на выводах.

Измерение сопротивления изоляции.

Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Методика измерения сопротивления и приборы, используемые при этом, представлены испытаниях изоляции электрооборудования повышенным напряжением.

Перед началом измерения сопротивления изоляции на кабельной линии необходимо:

  1. Убедиться в отсутствии напряжения на линии.
  2. Заземлить испытуемую цепь на время подключения прибора.

После окончания измерения, прежде чем отсоединять концы от прибора необходимо снять накопленный заряд путем наложения заземления.

Разрядку кабеля необходимо производить при помощи специальной разрядной штанги сначала через ограничительное сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.

При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания мегаомметра следует отмечать только после окончания заряда кабеля.

Категорически запрещается измерять сопротивление изоляции на кабельной линии, если она хотя бы на небольшом участке проходит вблизи другой линии, находящейся под напряжением.

Испытание повышенным напряжением выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.

Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей

Тип кабеля

Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

10

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

6

12

5

Пластмассовая

15

10

Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.

При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ – со скоростью не более 0,5 кВ/с.

В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.

Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.

При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.

Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.

При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.

После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.

Испытание повышенным напряжением промышленной частоты.


Испытание повышенным напряжением промышленной частоты допускается

производить для линий 110-220 кВ взамен испытания повышенным напряжением выпрямленного тока.

Величины испытательного напряжения промышленной частоты приведены в табл. 6.

Таблица 6. Величины испытательного напряжения промышленной частоты

Рабочее напряжение кабеля, кВ

Испытательное напряжение кВ

Испытательное напряжение по отношению к земле, кВ

Продолжительность испытания, мин

110

220

130

5

220

500

288

5

Методика испытания и установки для испытания изоляции повышенным напряжением промышленной частоты приведены испытаниях изоляции электрооборудования повышенным напряжением.

Определение активного сопротивления жил.

Производиться для линий напряжением 35 кВ и выше.

Активное сопротивление жил кабельной линии постоянному току, приведенные к 1 мм сечения, 1 м длины и температуре + 20 С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

Активное сопротивление жил кабелей постоянному току представлены в табл. табл. 7, 13.8.

Методики измерения и необходимые приборы приведены.

Таблица 7. Активное сопротивление жил кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км

Сечение, мм

Сопротивление, Ом/км

16

1,15/1,95

95

0,194/0,33

25

0,74/1,26

120

0,153/0,26

35

0,52/0,88

150

0,122/0,207

50

0,37/0,63

185

0,099/0,168

70

0,26/0,44

240

0,077/0,131

Примечание: в числителе указано для медной, а в знаменателе для алюминиевой жилы.

Таблица 8. Активное сопротивление жил маслонаполненных кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км*

Сечение, мм

Сопротивление, Ом/км*

Низкого давления

Высокого давления

Низкого давления

Высокого давления

120

0,1495

0,1513

400

0,04483

0,04453

150

0,1196

0,1209

500

0,03587

0,03575

185

0,09693

0,09799

550

0,03260

0,03295

240

0,07471

0,07601

625

0,02869

0,02846

270

0,06641

0,06593

700

0,02562

300

0,05977

0,06040

800

0,02242

350

0,05123

Определение электрической рабочей емкости жил.

Производиться для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5%.

Измерение емкости кабельных линий производится методом амперметравольтметра или по мостовой схеме.

Метод амперметра-вольтметра. позволяет с большой точностью определять емкости со значениями C≥0,1 мкФ, что соответствует параметрам кабелей. Схема измерения по данному методу представлена на рис. 2.

По результатам измерения напряжения и тока емкость, мкФ, вычисляется по формуле

 

где: I – емкостной ток, А; U – напряжение на кабеле, В; f – частота напряжения в сети, Гц.

По данным измерения определяется удельная емкость кабеля, мкФ/км

 

В том случае, когда измерение методом амперметра-вольтметра требует специального оборудования и приборов, желательно применение мостового метода.

При измерении мостовым методом используются мосты переменного тока типа МД-16, P5026, P595 и др. Измерения производятся по перевернутой схеме (о порядке измерения следует руководствоваться указаниями). При выборе средств измерения следует учитывать, что удельные погонные емкости кабелей 35 кВ и выше составляют десятые доли мкФ/км, а пределы измерения емкости мостами переменного тока находятся в диапазонах:

мост Р5026 на напряжении 3-10 кВ – 10 ÷1 мкФ, на напряжении менее 100 В – 6,5·10-4÷5·102 мкФ;

мост МД-16 на напряжении 6-10 кВ – 0,3·10-4 ÷0,4 мкФ, на напряжении 100 В – 0,3 · 10-3 ÷100 мкФ;

мост P595 на напряжении 3-10 кВ –3·10-5 ÷1 мкФ, на напряжении менее 100 В – 3 · 10-4 ÷102 мкФ.

 

 

Рис. 2. Измерение емкости кабеля методом амперметра-вольтметра

Измерение распределения тока по одножильным кабелям.

Неравномерность в распределении токов на кабелях не долина быть более 10%. Измерения производятся переносными приборами или токоизмерительными клещами.

 

  1. Измерение сопротивления заземления

Измерение сопротивления заземления производится на линиях всех напряжений для концевых заделок, а на линиях 110-220 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

При измерении сопротивления заземления следует руководствоваться указаниями.

Проверки и испытания, проводимые дополнительно на маслонаполненных кабелях

Маслонаполненные кабели низкого и высокого давления с медной жилой, с изоляцией из пропитанной бумаги, в свинцовой или алюминиевой оболочке предназначены для передачи и распределения электрической энергии при номинальном междуфазном переменном напряжении до 500 кВ включительно частотой 50-60 Гц. Кабели предназначены для трехфазных сетей с заземленной нейтралью с прямой связью кабельных линий с воздушными линиями электропередачи или без нее.

Пусконаладочные работы на кабельных линиях высокого и низкого давления в процессе их сооружения проводятся в два этапа: на первом ведется контроль параметров технологического процесса монтажа, задаваемого инструкциями завода-изготовителя, пооперационные испытания и наладка элементов линии по мере их готовности, на вто ром производятся приемо-сдаточные испытания полностью смонтированной кабельной линии и функциональная проверка ее вспомогательных систем.

К основным технологическим испытаниям и измерениям первого этапа относятся:

  1. Испытание электрической прочности и определение tgδ кабельного масла из кабеля, подготовленного к монтажу; банок с обмоточным материалом; из временных баков давления, используемых для подпитки кабеля в процессе монтажа муфт; из монтажных баков; из дегазационной установки; из рабочих баков давления перед подключением их к коллектору; из муфт после монтажа.
  2. Проверка качества сварных соединений секций трубопровода гаммаграфированием.
  3. Проверка качества защитного покрытия трубопровода импульсным повышенным напряжением.
  4. Испытание герметичности трубопровода и медных труб разветвления; агрегата подпитки; электромагнитных вакуумных клапанов; обратных и перепропускных клапанов; соленоидных вентилей; маслонасосов; кабельной линии перед заполнением маслом.
  5. Измерение сопротивления заземления кабельных колодцев.
  6. Измерение тягового усилия при протяжке кабеля.
  7. Определение относительной влажности азота перед временным заполнением им участков кабельной линии.
  8. Испытание механической прочности фарфоровых покрышек концевых муфт.
  9. Измерение температуры и относительной влажности воздуха в колодцах и временных шатрах при монтаже муфт.
  10. Измерение давления в трубах кабельной линии при заполнении маслом.
  11. Измерение остаточных давлений воздуха в баке дегазатора дегазационной установки при обработке масла и определении степени дегазации.
  12. Определение высотных отметок расположения концевых кабельных муфт, манометров и рабочих баков давления.
  13. Определение фактической длины кабельной линии.
  14. Испытание и наладка оборудования систем автоматического контроля.
  15. Наладка схем сигнализации, автоматического обогрева муфт, вентиляции, пожаротушения и защиты.

Кабели низкого давления испытываются по п.п. 1, 5, 6, 8, 9, 11-15, кабели высокого давления по п.п. 1 (кроме масла из рабочих и временных баков давления), 2-4, б-15.

В приемо-сдаточные испытания маслонаполненных кабелей, наряду с указанными в настоящем разделе, входят следующие работы^

  • Испытание на наличие нерастворенного воздуха (пропиточное испытание).
    Проводится для маслонаполненных кабельных линий напряжением 110-220 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.
  • Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.
    Производиться для маслонаполненных кабельных линий напряжением 110-220 кВ в соответствии с указаниями технической документации.
  • Контроль состояния антикоррозийного покрытия.
    Производится для стального трубопровода маслонаполненных кабельных линий напряжением 110-220 кВ.

Металлические трубопроводы от почвенной коррозии должны быть защищены изоляцией или укладкой их в неметаллические трубы, блоки, каналы и т. п., а в ряде случаев катодной поляризацией. Защитные средства выбираются на основании показателей коррозийной агрессивности среды относительно металла. Коррозийную активность грунтов относительно стали можно оценить по результатам измерений удельного сопротивления грунта (см. табл. 11).

Таблица 11. Характеристика коррозийной активности грунта относительно стали

Удельное сопротивление грунта, Ом.м

Более 100

20-100

10-20

5-10

Менее 5

Коррозийная активность

Низкая

Средняя

Повышенная

Высокая

Весьмавысокая

При повышенной, высокой и весьма высокой, как правило, необходима катодная поляризация.

Проверка характеристик масла.

Производится для маслонаполненных кабельных линий 100-220 кВ. Отбор проб следует производить из всех элементов линии. Пробы масла С-220, отбираемые из всех элементов через 3 суток после заливки, должны удовлетворять требованиям таблицы 13.12. То же масла МН-3 через 5 суток после заливки.

Таблица 13 12. Предельные значения показателей качества масла кабельных линий

Показатели масла

Нормы для масла марки

С-220

МН-3

Электрическая прочность, кВ/см, не менее

180

180

Тангенс угла диэлектрических потерь при +100’С, % не более

0,005

0,008

Кислое число, мг КОН на 1 г масла, не более

0,02

0,2

Степень дегазации, % не более

0,5

1,0

 

  1. Проведение периодических проверок, измерений и испытаний силовых кабельных линий

Проведение периодических проверок, измерений и испытаний силовых кабельных линий, находящихся в эксплуатации.

Нормы испытаний силовых кабельных линий, находящихся в эксплуатации.

Профилактические испытания силовых кабельных линий проводят при капитальном (К), текущем (Т) ремонтах и в межремонтный период (М).

К, Т, М – проводятся в сроки, устанавливаемые системой ППР, но не реже: К – 1 раза в 6 лет, Т или М – 1 раза в 3 года, за исключением случаев неудовлетворительных результатов испытаний и измерений, предусмотренные п.п. испытание повышенным выпрямленным напряжением, измерение сопротивления изоляции и измерение блуждающих токов (ниже). Объем профилактических испытаний, предусмотренный ПЭЭП, включает следующие работы.

  1. Определение целостности жил и фазировки.
  2. Испытание повышенным выпрямленным напряжением.
  3. Измерение сопротивления изоляции.
  4. Контроль осушения вертикальных участков.
  5. Определение сопротивлений заземлений.
  6. Измерение токораспределения по одножильным кабелям.
  7. Измерение блуждающих токов.
  8. Определение химической коррозии.
  9. Измерение нагрузки.
  10. Измерение температуры кабелей.
  11. Проверка срабатывания защиты линии до 1000 В с заземленной нейтралью.

Определение целостности жил и фазировки.

Производится при К и Т после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля.

Все жилы должны быть целыми и сфазированными.

О порядке определения целостности жил и фазировки следует руководствоваться указаниями выше.

Испытание повышенным выпрямленным напряжением:

а) кабелей напряжением выше 1000 В (кроме резиновых кабелей 3-10 кВ)

Производится при капитальном и текущем ремонте. Групповые кабели на подстанциях могут испытываться без отсоединения от шин. Испытание повышенным напряжением выпрямленного тока кабелей, расположенных в пределах одного распределительного устройства или здания, рекомендуется производить не более 1 раза в год.

Значения испытательных напряжений выпрямленного тока представлены в табл. 13.

О порядке проведения испытаний повышенным напряжением выпрямленного тока следует руководствоваться указаниями выше.

Таблица 13. Испытательное напряжение выпрямленного тока

Линии с рабочим напряжением, кВ

Вид испытаний и испытательное напряжение, кВ

Продолжительность испытания каждой фазы, мин

К

Т,М

2-10

6·Uном

(5÷6)·Uном

5

20-35

5·Uном

(4÷5)·Uном

5

110

250

250

15

220

400

400

15

б) кабелей 3-10 кВ с резиновой изоляцией (например, марок КШВГ, ЭВТ) Производится при К испытательным напряжением 2·Uном в течение 5 мин.

Измерение сопротивления изоляции.

Проверяется мегомметром на напряжение 2500 В в течение 1 мин. Сопротивление изоляции должно быть не ниже 0,5 МОм.

О порядке проведения испытаний повышенным напряжением выпрямленного тока следует руководствоваться указаниями выше.

  1. кабелей 3-10 кВ с резиновой изоляцией.
    Производится при Т и М, а также после мелких ремонтов, не связанных с перемонтажом кабеля, перед наступлением сезона (в сезонных установках) и не реже 1 раза в год в стационарных установках
  2. кабелей напряжением до 1000 В
    Производится при капитальном ремонте.

Контроль осушения вертикальных участков.

Производится при М на кабелях напряжением 20-30 кВ путем измерения и сопоставления температур нагрева оболочки в разных точках вертикального участка. Разность нагрева отдельных точек должна быть в пределах 2-3 °С.

Контроль осушения можно производить также путем снятия кривых tgδ=f(U) на вертикальных участках. По значениям тангенса угла диэлектрических потерь можно судить о надежности изоляции по отношению к тепловому пробою, общем старении, увлажнен ности и обедненности изоляции пропиточной массой. Зависимость tgδ от напряжения представлена на рис. 3. При увеличении напряжения до некоторого значения Uп нaчинается ионизация имеющихся в изоляции газовых или жидкостных включений, при этом tgδ начинает резко возрастать за счет дополнительных потерь, вызванных ионизацией. Очевидно, что напряжение Uп при обеднении изоляции будет уменьшаться, tgδ и потери соответственно увеличиваться. Зависимость tgδ=f(U) также будет изменяться.

О порядке проведения измерения tgб следует руководствоваться рекомендованными указаниями.

 Рис. 8. Зависимость тангенса угла диэлектрических потерь от напряжения

Определение сопротивлений заземлений.

Производится при К у металлических концевых заделок на линиях всех напряжений, кроме линий до 1000 В с заземленной нейтралью, а на линиях напряжением 110220 кВ также у металлических конструкций кабельных колодцев и подпиточных пунктов.

О порядке проведения измерения сопротивлений заземлений, а также требованиями предъявляемыми к заземлителям, следует руководствоваться указаниями.

Измерение токораспределения по одножильным кабелям.

Производится при капитальном ремонте.

Неравномерность распределения токов на кабелях должна быть не более 10% (особенно если это приводит к перегрузке отдельных фаз).

Измерение блуждающих токов

Производится при М у кабелей, проложенных в районах нахождения электрифицированного транспорта (метрополитена, трамвая, железной дороги), 2 раза в первый год эксплуатации кабеля или электрифицированного транспорта, далее – согласно мест ным инструкциям. Измеряются потенциалы и токи на оболочках кабелей в контрольных точках, а также параметры установки электрозащит.

Опасными считаются токи на участках линий в анодных и знакопеременных зонах со следующих случаях:

  1. бронированные кабели, проложенные в малоагрессивных грунтах (удельное сопротивление почвы р > 20 Ом·м), при среднесуточной плотности тока утечки в землю более 15 мА/м;
  2. бронированные кабели, проложенные в агрессивных грунтах (р < 20 Ом·м), при любой плотности тока утечки в землю;
  3. кабели с незащищенными металлическими оболочками, с разрушенными броней и защитными покрытиями;
  4. стальные трубопроводы линий высокого давления независимо от агрессивности окружающего грунта и видов изоляционных покрытий на них.

Измерение плотности тока утечки с поверхности кабеля в грунт производится с помощью вспомогательного электрода, зарытого вблизи самого кабеля (см. рис. 9). Вспомогательный электрод изготовляют из деревянного стержня с навитой на него кабельной бронелентой, зачищенной до металлического блеска, с площадью поверхности не менее 10000 мм 2 . Земля вокруг этого электрода утрамбовывается и увлажняется. Между оболочкой (броней) кабеля и вспомогательным электродом включается с помощью изолированных проводников миллиамперметр с внутренним сопротивлением 1-5 Ом.

Плотность тока утечки с поверхности кабеля вычисляется, мА/мм2

 где iср – средняя плотность тока утечки; Iср – среднее значение миллиамперметра за период измерения, мА; s – поверхность ленты вспомогательного электрода, м2; к – коэффициент, характеризующий отношение среднесуточной тяговой нагрузки ближайшей к месту измерения тяговой подстанции к ее среднему значению за 1 ч в период измерения тока утечки.

Ток, проходящий по оболочке кабеля, может быть определен двумя способами – измерением падения напряжения на ней или методом компенсации. В первом способе используют милливольтметр, выводы которого электрически соединяют с оболочкой кабеля в двух точках, во втором случае к измеряемым точкам подсоединяют дополнительный источник питания и с помощью переменного резистора добиваются, чтобы показания милливольтметра сводились к нулю.

 

Рис. 9. Измерение плотности тока утечки.

  1. обследуемый кабель;
  2. вспомогательный электрод.

Определение химической коррозии.

Производится при М, если имеет место повреждение кабелей коррозией и нет сведений о коррозионных условиях трассы.

Оценку коррозионной активности грунтов и естественных вод рекомендуется производить по данным химического анализа среды или методом потери массы металла.

Характеристики коррозийной активности грунтов относительно свинца и алюминия приведены в табл. 14 и 15. Коррозийная активность грунтов относительно стали, определяется по табл. 11.

Таблица 14. Характеристика коррозийной активности грунтов относительно свинца

Грунты

Показатели

Коррозионная активность

Количество органических веществ, %

Количество водородных ионов (рН)

Количество азотных веществ, %

Песчаные, песчано-глинистые

Не более 1

6,5 – 7,5

Не более 0,0001

Низкая

Глинистые, солончаковые, известковые, слабочерноземные

1 – 1,5

5 – 6,5 и 7,5 – 9

0,001-0,001

Средняя

С ильночерноземные, торфяные; грунты, засоренные посторонними веществами (мусором, известью, шлаком)

Более 1,5

Менее 5 и более 9

Более 0,001

Высокая

 Таблица 15. Характеристика коррозийной активности грунтов относительно алюминия

Среда

Показатели коррозийной активности

Коррозионная активность

Значение рН

Количество веществ в грунтах, %; содержание ионов в водах, мг/л

С

SO

F 3+

Все грунты, кроме засоренных постороннимивеществами

6,0 – 7,54,5 – 6,0 и7,5 – 8,5Менее 4,5и более 8,5

Менее 0,0010,001 – 0,005Более 0,005

Менее 0,0050,005 – 0,01Более 0,01

Менее 0,0020,002 – 0,01Более 0,01

НизкаяСредняяВысокая

Измерение нагрузки.

Производиться при М ежегодно не менее 2 раз, в том числе 1 раз в период максимальной нагрузки линии.

Токовые нагрузки должны удовлетворять требованиям ПУЭ.

Измерение температуры кабелей.

Производится при М по местным инструкциям на участках трассы, где имеется опасность перегрева кабелей.

Температура кабелей должна быть не выше допустимых значений определяемых ПУЭ.

Проверка срабатывания защиты линии до 1000 В с заземленной нейтралью.

Производится при К и М у металлических концевых заделок непосредственным измерением тока однофазного короткого замыкания на корпус с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим оп ределением тока однофазного короткого замыкания. Полученный ток сравнивается с номинальным током защитного аппарата линии с учетом коэффициентов, определяемых ПУЭ.

При замыкании на корпус концевой заделки должен возникнуть ток однофазного короткого замыкания, превышающий номинальный ток плавкой вставки ближайшего предохранителя или расцепителя автоматического выключателя. Превышение должно быть не меньше, чем указано в ПУЭ.

О порядке проведения измерений следует руководствоваться соответствующими указаниями.

Отыскание мест повреждения силовых кабелей.

Процесс отыскания мест повреждения кабелей в общем случае состоит из трех этапов: этап прожигания поврежденного места кабеля с целью снижения переходного сопротивления в месте повреждения; этап отыскания участка кабеля, на котором произошло повреждение; этап отыскания места повреждения кабеля на определенном на предыдущем этапе участке.

Прожигание кабеля.

При пробое кабеля, например при проведении испытаний, повышенным напряжением, в канале разряда происходит разложение маслоканифольной массы с образованием газов, способствующих погасанию дуги и деионизации разрядного промежутка. Последнее приводит к затеканию в разрядный канал разогретой под действием электрической дуги кабельной массы и восстановлению электрической прочности. Такой вид повреждения, называемый “заплывающий пробой”, существенно затрудняет отыскание места повреждения. Для снижения переходного сопротивления применяют прожигание.

В зависимости от применяемого метода отыскания места повреждения кабеля, требуемые переходные сопротивления составляют от долей и единиц Ом до сотен и тысяч кОм.

Прожигание производят как на переменном, так и на постоянном токе. Для успешного прожигания места повреждения силового кабеля на постоянном токе требуется напряжение в 1,3-1,5 раза больше, чем на переменном токе. Кроме того, установки на постоянном токе по массе в 1,5-2 раза больше установок на переменном токе. Тем не менее, на практике находят применение обе установки.

а) Прожигание на постоянном (выпрямленном) токе.

Для успешного прожигания мест повреждения на постоянном токе необходимо напряжение 30-50 кВ в начале процесса и ток до 3А в конце процесса, причем напряжение и ток должны регулироваться. Этим условиям удовлетворяют комбинации кенотрон – газотрон, кенотрон – тиратрон, кенотрон – полупроводниковый выпрямитель, высоко вольтный полупроводниковый выпрямитель – полупроводниковый выпрямитель на ток до 3А. Промышленность специальных установок достаточной мощности не выпускает. На практике находит применение установки МКС Мосэнерго, принципиальная схема которых приведена на рис. 10.

Установка состоит из выпрямителя ВП-60 (11) для испытания и предварительного прожигания изоляции в месте повреждения кабеля; выпрямителя ВП-10/5 (12, 13) для прожигания изоляции до малых переходных сопротивлений; генератора звуковой часто ты АТО-8 с согласующим трансформатором для окончательного дожигания места по
вреждения.

Прожигание изоляции в месте повреждения кабеля начинают выпрямителем ВП60 (11) и проводят в режиме допустимого тока установки (75 мА) до снижения напряжения прожигания до 15 кВ. Затем рубильником 1 подключают выпрямитель ВП-10/5 (12, 13) и дальнейшее прожигание проводят параллельно включенными выпрямителями. При снижении напряжения пробоя до 10 кВ и достижении тока выпрямителя ВП-10/5 1 А, выпрямитель ВП-60 отключают. После того как напряжение пробоя снизится до 5 кВ обмотки трансформатора выпрямителя ВП-10/5 (6) переключают с последовательного на параллельное соединение переключателем 10, встроенного в корпус трансформатора и продолжают прожигание током 3 А. Окончание прожигания определяется включением заземляющего рубильника 2. Если при замыкании рубильника показания амперметра выпрямителя ВП-10/5 практически не изменяется, то это означает, что переходное со противление в месте повреждения кабеля достаточно мало. При необходимости дальнейшего снижения сопротивления включают третью ступень прожигания генератором звуковой частоты.

Процесс прожигания существенно зависит от места и характера повреждения, а также параметров кабельной линии.

При повреждении вне муфт процесс прожигания проходит спокойно и через 5-10 мин переходное сопротивление резко снижается до нескольких десятков Ом. Если при увеличении тока прожигания стрелка амперметра (миллиамперметра) начинает сильно колебаться, то необходимо во избежание разрушения проводящего мостика резко снизить ток до получения устойчивого режима прожигания и только через 3-5 мин продолжить плавное увеличение тока.

 

Рис. 10. Принципиальная схема установки МКС Мосэнерго.

1 – рубильник однополюсный 5А; 2 – заземляющий нож; 3 – амперметр на 80 А; 4 – трансформатор ВП-60 0,22/42,5 кВ, 6 кВА; 5 – регулировочный трансформатор напряжения 250 В, 7 кВА; 6- трансформатор ВП-5/10, 7 кВА; 7 – генератор звуковой частоты АТО-8; 8 – трансформатор согласования 8 кВА, 1000/500/380/220/110 В; 9 – переключатель; 10 – переключатель ВП10/5; 11- выпрямитель ВП-60; 12, 13- выпрямитель ВП-10/5.

При повреждениях в муфтах прожигание зависит от соотношения мощности выпрямительной установки и длины кабеля. При неизменной мощности выпрямительной установки с увеличением длины кабеля увеличивается время для заряда его емкости до напряжения пробоя. По этой причине частота разрядов уменьшается, и место повреждения успевает “заплывать”. Прожигание длится намного дольше, чем в предыдущем случае. Переходное сопротивление колеблется в широких пределах. Прожигание может оказаться не успешным. В этом случае для отыскания места повреждения используют метод колебательного разряда (определение участка повреждения) и акустический метод (определение места повреждения).

При прожигании места повреждения кабеля желательно прожечь изоляцию неповрежденной жилы с целью получения замыкания между жилами. Данное повреждение относительно легко отыскивается известными методами. Для получения межфазного замыкания к неповрежденным жилам прикладывается испытательное напряжение, а по поврежденной жиле пропускают ток от понижающего трансформатора. При этом про исходит разогрев изоляции в месте повреждения, что приводит к снижению сопротивления изоляции неповрежденных жил и, как следствие, к пробою. Для защиты понижающего трансформатора при пробое с неповрежденной жилы на поврежденную, между последней и землей устанавливается разрядник на напряжение 1,5-2 кВ.

б) Прожигание на переменном токе.

При прожигании изоляции кабелей на переменном токе используется явление резонанса на частоте 50 Гц, что позволяет существенно снизить мощность установки и сократить время достижения необходимого переходного сопротивления. Особенно эффективны эти установки при прожигании мест повреждения в кабелях значительной длины (до 5 км) и в соединительных муфтах. Эффект достигается за счет того, что у резонансных установок после пробоя напряжение восстанавливается значительно быстрее, чем у установок постоянного тока. Частота следования пробоев столь велика, что изоляция в месте пробоя не успевает восстанавливаться ( “заплывать”) и возникает устойчивый проводящий мостик.

В установках переменного тока применяют специальные резонансные трансформаторы, вторичная обмотка которых образует с емкостью кабеля резонансный контур (см. рис. 11а). При этом в резонансном контуре возбуждается реактивная мощность до 200-300 квар при потребляемой активной мощности до 10 кВт. В представленной схеме используется резонанс токов в контуре индуктивность (вторичная обмотка транс форматора) и емкость кабеля. Напряжение на резонансном контуре регулируют переключением на соответствующие выводы вторичной обмотки трансформатора, а также изменением емкости за счет параллельного включения с поврежденной жилой других жил кабеля. Процесс прожигания проходит автоматически до достижения режима короткого замыкания трансформатора (показание амперметра 1-2 А).



 Рис. 11. Принципиальные схемы резонансного метода прожигания мест повреждения изоляции силовых кабелей.

а) – прожигание с помощью резонансного трансформатора типа РА-2; б)прожигание при параллельном включении дросселя; в) – прожигание при последовательном включении дросселя.

Резонансное прожигание осуществляется также регулируемыми установками, в которых роль индуктивного сопротивления выполняют вторичная обмотка трансформа тора и регулируемый дроссель. Последний может включаться параллельно или последовательно емкости кабеля. При параллельном включении дросселя и кабеля (рис. 11б) в схеме возникает резонанс токов и для установки необходим повышающий трансформатор с вторичным напряжением, равным максимально возможному напряжению пробоя. При последовательном включении дросселя и кабеля (рис. 11в) в схеме возникает резонанс напряжений, что позволяет использовать источник питания с пониженным напряжением.

На практике используется резонансный трансформатор типа РА-2 и его модификации ранее выпускавшийся Московским опытным заводом электромонтажной техники. Трансформатор состоит из двух катушек, сердечника и корпуса (см. рис. 3.12).

Обмотка низкого напряжения L1 намотана на бакелитовый каркас размером 230х220х90 мм и содержит 320 витков из провода ПДС сечением 16 мм; между слоями намотки имеется воздушный зазор 3 мм (обеспечен с помощью деревянных клиньев). Обмотка высшего напряжения L2 намотана на бакелитовом каркасе размером 125х115х430 мм, содержит 10000 витков из провода ПЭВ диаметром 0,86 мм и состоит из трех последовательно соединенных катушек. Верхняя и средняя катушки содержат по 3200 витков с выводом Xl от начала обмотки верхней катушки. Нижняя катушка содержит 3600 витков с выводом Х2 от начала обмотки. Сердечник набран из трансформаторной стали 70х80х400 мм, а каркас — из немагнитного сплава на основе алюминия. Крышка и дно каркаса изготовлены из текстолита. Небольшие размеры и масса делают трансформатор удобным для транспортировки, а простота конструкции дает возможность изготовить его силами пусконаладочных и эксплуатационных организаций.

 Рис. 12. Общий вид резонансного трансформатора РА-2.

1 – катушка L1; 2 – катушка L2; 3 – сердечник; 4-каркас; 5 – выводы 220-380 8; 6 – выводы заземления; 7- крышка; 8 – дно.

Основным недостатком резонансных трансформаторов является трудность настройки в резонанс и неуправляемость процессом прожигания. Для того чтобы по возможности свести до минимума негативное влияние указанных недостатков, необходимо, учитывать, что, напряжение, возбуждаемое на кабеле, зависит от напряжения пробоя, емкости кабеля и переходного сопротивления в месте повреждения.

Таблица 16. Значение коэффициента схемы kсх в зависимости от схемы соединения жил и оболочки кабеля

 

При работе с резонансными трансформаторами типа РА-2 для успешного прожигания изоляции в месте повреждения, необходимо определить напряжение пробоя, переходное сопротивление в месте повреждения и емкость кабеля. С достаточной степенью точности емкость кабеля можно определить по формуле

 где kсх , Суд ,1- соответственно коэффициент схемы (см. табл. 16); удельная емкость одной жилы, мкФ/км (см. табл. 17); длина кабеля, км.

Таблица 17. Емкость одной жилы трехжильного кабеля с секторными жилами и пропитанной бумажной изоляцией по отношению к двум другим жилам и металлической оболочке, мкФ/км

Сечение, мм2

Номинальное напряжение, кВ

до 1

6

10

162535507095

0,360,330,450,530,580,63

0,190,200,240,280,330,37

0,150,180,200,210,220,23

120150185240

0,670,700,780,85

0,400,410,470,52

0,270,290,320,36

По табл. 16 выбирают такую схему соединения жил и оболочки кабеля, при которой емкость кабеля будет достаточна для возбуждения напряжения резонансного трансформатора большего чем напряжение пробоя. Зависимости возбуждаемого напряжения резонансного трансформатора от емкости кабеля представлены на рис. 13. Приведенные зависимости справедливы для переходного сопротивления в месте повреждения более 30 Ом. При меньших сопротивлениях получить необходимое напряжение не удается. В этом случае необходимо проводить дожигание на основном выводе трансформатора (U2I = 5,3 кВ).

Применение резонансного трансформатора нецелесообразно если напряжение пробоя близко к испытательному и составляет 25-30 кВ постоянного тока или 18-22 кВ действующего значения переменного тока. В этом случае возникают трудности с точной настройки в резонанс. Даже при успешной настройки происходят редкие, 2-3 в секунду, пробои, что недостаточно для успешного прожига поврежденной изоляции. Кроме того, в режимах близких к резонансному трансформатор работает с большой перегрузкой и по условиям нагрева продолжительность работы должна быть ограничена до 1-1,5 мин. По этому в таких случаях рекомендуется путем прожигания на постоянном токе снизить напряжение пробоя до 15-20 кВ (11-14 кВ действующего значения). При этих напряжениях пробоя и диапазоне изменения емкости от 0,8 до 1,6 мкФ напряжение на емкости достигает напряжения пробоя за три – пять периодов и прожигание происходит обычно в виде периодических разрядов.

При напряжении пробоя 8-10 кВ прожигание проводят в режимах, близких к резонансу токов на основном выводе 1 (рис. 11 a) при емкости кабеля С каб = 0,4 ÷ 0,8 мкФ (см. рис. 13а) и на отпайке 11 при С каб = l ÷ 2 мкФ. При достижении напряжения пробоя до 5 кВ и ниже рекомендуется перейти на прямое (нерезонансное) дожигание. При необходимости дальнейшего уменьшения сопротивления дожигание можно проводить непосредственно от сети 220 В, используя первичную обмотку при закороченной вторичной в качестве реактора.

Во время прожигания изоляции необходимо контролировать ток вторичной обмотки по амперметру с номинальным током не менее 10 А и не допускать работу трансформатора по времени больше, чем указано в табл. 18. За величину тока следует брать среднее значение колебания стрелки амперметра при периодических разрядах.

 

Рис. 13. Зависимость тока в первичной цепи 11 и возбуждаемого на кабеле напряжения U2Ι(II) от емкости кабеля для резонансного трансформатора PA-2M при использовании основного вывода (а) и отпайки (б).

Таблица 18. Длительно допустимое время непрерывной работы резонансного трансформатора типа PA-2М в зависимости от тока нагрузки

I2, А

12

8

6

5

4

3

2

1

tраб, мин

1

2,5

5

7

1 1

20

45

180

Напряжение, возбуждаемое на кабеле, можно оценить по формуле

 Для прожигания изоляции в месте повреждения силового кабеля применяется также регулируемая резонансная установка РРУ-10. Процесс прожигания ведется по схеме рис. 11в и заключается в плавной подстройке индуктивности сердечником дросселя. Момент резонанса определяют по амперметру при максимуме тока. При появлении пробоев стрелка амперметра начинает колебаться, а в дросселе слышны характерные динамические удары. Напряжение, возбуждаемое на кабеле, практически не зависит от емкости (в диапазоне 0,25-0,75 мкФ) и может плавно изменяться от 1,2 кВ до 25 кВ. При небольшой длине кабеля (емкость меньше 0,25 мкФ) параллельно кабелю включают балластную емкость 0,25-0,5 мкФ. При длине кабеля более 2 км (емкость более 0,75 мкФ) используют только часть обмотки дросселя при меньшем возбуждаемом напряжении.

Появление устойчивого мостика сопротивления в месте повреждения (до нескольких сот Ом) соответствует уменьшению тока в контуре практически до нуля.

 

  1. Отыскание участка повреждения кабеля

Методы, с помощью которых отыскивают участок повреждения кабеля, носят название относительные и к ним относятся: петлевой метод; емкостной метод; импульсный метод и метод колебательного разряда.

Петлевой метод.

Петлевой метод применяется только при определении расстояния до замыкания одной или двух жил относительно оболочки при переходном сопротивлении постояyному току в месте повреждения не более 5 кОм и при наличии хотя бы одной неповрежденной жилы. Метод основан на принципе измерительного моста постоянного тока (см. рис. 14).

 

Измерения производят с помощью чувствительного кабельного моста, например Р-333, Р-336 и др.

Для проведения измерений поврежденную и неповрежденную жилы на противоположном конце соединяют перемычкой из медного многожильного провода сечением не менее 50 мм, к концам которой припаяны зажимы из латуни. Мост соединяют с жилами кабеля (зажимы 2, 3) гибким медным проводом сечением 4 мм2 с латунными зажимами.

Плечи измерительного моста образуются регулируемыми сопротивлениями r1 и r 2, сопротивлениями жил гх и r2 соответственно, пропорциональных длинам кабеля Lх и L+L у. Регулировкой сопротивлений r1 и r2 устанавливают стрелку гальванометра в нулевое положение, что соответствует равновесию плеч моста

 Расстояние до места повреждения кабеля определяют по формуле

После определения Lх необходимо поменять местами концы проводов, идущие к кабелю, и произвести повторное измерение. При этом определяют расстояние L+Lу. Если сумма полученных результатов существенно отличается от двойной длины кабеля, то измерения необходимо повторить, предварительно проверив все контакты.

Для повышения точности определения расстояния до места повреждения рекомендуется измерения производить с одного (1) и другого (2) концов кабеля. Правильность произведенных измерений можно оценить по соотношению

 Чувствительность моста и, следовательно, точность измерения зависит от соотношения напряжения питания моста к переходному сопротивлению изоляции в месте повреждения. Поэтому напряжение питания моста должно составлять 100-120, 25-30 и 4-6 В при значениях переходных сопротивлений соответственно 5, 1 и 0,1 кОм.

При измерениях возможны ситуации, когда мост не уравновешивается. Это возможно в случаях, когда повреждение находится в самом начале кабеля со стороны измерения, чаще всего в концевой разделке кабеля, а также при обрыве соединительных проводов.

Формулы, представленные выше, справедливы для однородных линий. В случае, если линия имеет различные сечения и материал жил, необходимо после измерений уточнить расстояние до места повреждения путем приведения длин участков к какому-нибудь одному сечению S и удельному сопротивлению ρ

 где Lпр(i), ρ(i), S(i) – соответственно длина, удельное сопротивление и сечение i-го участка линии.

Приведенное расстояние до места повреждения определяется через приведенную длину линии и сопротивления плеч измерительного моста при его равновесии

 Действительное расстояние до места повреждения определяют по Lхпр путем обратного пересчета к действительным S(i) и р(i).

При использовании мостов сопротивлений постоянного тока петлевой метод позволяет определять расстояние до места повреждения кабеля с точностью до 0,1 – 0,3%.

Емкостной метод.

Метод применяется для определения расстояния до места обрыва одной или нескольких жил кабельной линии путем измерения емкости кабеля. Измерения могут проводиться как с помощью моста переменного тока (см. рис. 15), так и с использованием баллистического гальванометра на постоянном токе (см. рис. 16).

 

Рис. 15. Схема измерений при определении места обрыва жил кабеля емкостным методом с помощью моста переменного тока 1000 Гц.

1 – жилы кабеля; 2 – место обрыва жилы; 3 – оболочка кабеля; Т – телефон.

Измерения на переменном токе рекомендуется производить при переходном сопротивлении замыкания места повреждения кабеля от 5 кОм до 20 МОм, а на постоянном токе при сопротивлении свыше 20 МОм.

Измерения на переменном токе заключается в измерении емкости участка кабеля до места обрыва С х с помощью моста переменного тока 1000 Гц (например, р-565). Плечи измерительного моста образуются нерегулируемыми сопротивлениями r1 и r4, регулируемым сопротивлением г2, регулируемой эталонной емкостью Сэт и емкостью измеряемой жилы Cх. Равновесие моста устанавливается rq и Сэт и проверяется по отсутствию звучания телефона Т.

Расстояние до места повреждения определяется в зависимости от характера повреждения одним из способов представленных ниже.

 Рис. 16. Схема измерений при определении места обрыва жил кабеля емкостным методом на постоянном токе.

1 – жилы кабеля; 2 – место обрыва жилы; 3 – оболочка кабеля.

  1. Разрыв жилы без заземления. Измеряют емкость поврежденной жилы с одного конца кабеля Cx(1), затем с противоположного Сx(2). Полную длину кабеля делят пропорционально полученным емкостям

     
  2. Одна из частей оборванной жилы имеет замыкание на землю. Измеряют емкость незаземленной части жилы С х и емкость одной неповрежденной жилы С. Расстояние до места повреждения будет определяться



 

  1. Емкость жилы может быть измерена с одного конца, остальные жилы замкнуты на землю. Измеряют емкость незаземленного конца оборванной жилы Сх. Расстояние до места повреждения определяют ориентировочно по удельной емкости жилы кабеля С 0 (cм. табл. 17)



 

 

При измерениях наибольшая точность будет обеспечиваться в 1-ом случае, во 2ом случае результаты измерений несколько завышаются, случай 3 целесообразен при длине кабеля до 200 м.

Измерение емкости на постоянном токе с помощью баллистического гальванометра основан на том, что у последнего отброс стрелки пропорционален количеству электричества, проходящего через рамку при заряде или разряде емкости кабеля. При измерении, шунтом rш устанавливают минимальную чувствительность гальванометра G, а переключатель S2 устанавливают в положение 1. При этом зарядный ток, протекая через гальванометр в емкость кабеля, отбрасывает стрелку на угол αх. Шунтом повышают чувствительность для получения четкого замера. В качестве окончательного результата берут среднее значение по результатам 3 – 4 замеров угла αх. Перед каждым измерением емкость разряжается установкой переключателя S2 в положение 2. Измерение αэт на эталонной емкости выполняют аналогично при неизменном положении шунтирующего сопротивления.

При измерениях на постоянном токе возможны случаи аналогичных рассмотренным выше. Определение расстояния до места повреждения производится по тем же соотношениям.

Импульсный метод.

Импульсный метод основан на измерении времени tх прохождения импульса от одного конца кабельной линии до места повреждения и обратно, которое при скорости распространения этого импульса ч и расстояния до места повреждения Lх определяется  и , соответственно, . Скорость распространения импульса для большинства кабелей составляет 160±1 м/мкс, соответственно расстояние до места повреждения можно оценить как Lх≈ 80·tх.

На основе данного метода работает серия приборов типа Р5-5, P5-8, Р5-9, Р5-10, с помощью которых можно отыскивать место повреждения, начиная с 1 м от начала линии (Р5-9) и относительно большим переходным сопротивлением в месте замыкания на землю (P5-8).

При включении прибора в кабельную линию посылаются зондирующие импульсы, которые при прохождению по кабелю отражаются с изменением своих амплитудных значений и знаков в тех местах, в которых волновое сопротивление отличается от вол нового сопротивления кабеля (35 Ом). Чем больше отличается сопротивление от волнового, тем больше амплитуда отраженного импульса. Причем, в месте замыкания отраженный импульс меняет знак на противоположный. По амплитуде и знаку отраженного импульса определяют как место повреждения, так и характер повреждения. Однако, из за наличия мест ослабленной изоляции кабеля, вставок, муфт и т. п., в которых сопротивления также отличаются от волнового, амплитуды отраженных импульсов могут быть сопоставимы с амплитудами отраженных импульсов от мест повреждения, что усложняет идентификацию места замыкания или обрыва в кабеле. Так, например, прибором Р5-5 практически можно идентифицировать отраженный импульс от места повреждения с переходным сопротивлением, не превышающим 4-5-кратного значения волнового сопротивления кабеля, т. е. 150-200 Ом.

Рис. 17. Экран электронно-лучевой трубки прибора Р5-5 при определении места повреждения кабеля.

а) – проверка совпадения зондирующего импульса с нулевой масштабной меткой; б)совмещение отраженного импульса (место короткого замыкания) с нулевой масштабной меткой.

Зондирующие и отраженные импульсы отображаются на экране электроннолучевой трубки. На развертке отраженных импульсов с интервалом 2 мкс нанесены масштабные метки времени (см. рис. 17). Время прохождения импульса от места повреждения определяется отсчетом по шкале калиброванной временной задержки при совмещении отраженного импульса с имеющейся на экране масштабной нулевой мет кой.

Для получения на экране неподвижного изображения процесс подачи зондирующих импульсов и развертка отраженных импульсов периодически повторяются с часто той 500-1000 Гц. Развертка жестко синхронизирована со временем подачи зондирующего импульса.

Погрешность измерений на кабельных линиях указанными приборами достаточно высокая и не превышает 1 %.

Метод колебательного разряда.

Данный метод применяется для определения расстояния до места повреждения в кабелях при замыканиях, носящих характер “заплывающего” пробоя. Сущность метода заключается в том, что при пробое кабеля возникает разряд, носящий характер затухающих колебаний с периодом Т, мкс. Измеряя период свободных колебаний, можно определить расстояние до места повреждения кабеля

 

где v – скорость распространения волны свободных колебаний равная 160±1 м/мкс для кабелей напряжением 3 – 35 кВ.

Характер изменения напряжения колебательного процесса фиксируемый на зажимах кабеля представлен на рис. 18.

При измерении на поврежденную жилу кабеля подается высокое напряжение Uz отрицательной полярности. В момент пробоя в месте повреждения возникает равная по величине, но противоположная по знаку волна напряжения, которая распространяется к концам кабеля. Через время t1 = Lх/v после пробоя волна достигает конца кабеля, с которого производится

Рис. 18. Напряжение колебательного процесса при пробое кабеля.

Полярность напряжения на измеряемом конце меняется на положительное. Волна, отражаясь от конца кабеля без изменения полярности, уходит к месту повреждения, которое достигает через время t2 = 2·Lх/v с момента пробоя. Вновь отражаясь, но уже с изменением полярности, волна к моменту времени t3 = 3· Lх/v достигает конца кабеля, изменяя полярность напряжения на измеряемом конце на отрицательное. Ко времени t4 = 4· Lх/v v волна возвращается к месту повреждения и первый период колебания завершается. Таким об разом, время двойного пробега волны (t3 – t1) = 2· Lх/v можно определить по изменению полярности напряжения на измеряемом конце кабеля. В момент времени t1 отрицательная полярность меняется на положительную, при t3 – положительная на отрицательную.

 

Рис. 19. Схема включения прибора ЦР0200 при измерении расстояния до места повреждения кабеля.

1-провод высокого напряжения; 2-высоковольтная выпрямительная установка; 3-зарядное сопротивление; 4-контур заземления подстанции; 5-цепи заземления прибора ЦР0200; 6-заземление высоковольтной выпрямительной установки; 7-прибор ЦР0200; 8-присоединительное устройство (делитель напряжения); 9-соединительный кабель; 10-поврежденный кабель.

По изложенному принципу работают приборы ЭМКС-58M, Щ4120, ЦР0200. Схема включения последнего прибора представлена на рис. 19.

Расстояние до места повреждения в кабеле определяется прибором ЦР0200 автоматически с выводом результата измерения на отсчетное устройство. При использовании прибора необходимо выполнять ряд требований позволяющих добиться максимальной точности измерения. В частности, высоковольтная выпрямительная установка должна иметь заземленный плюс, т. е. создавать на кабеле заряд отрицательной полярности по отношению к земле. Несоблюдение полярности выпрямительной установки не обеспечивает правильности измерений. Цепи заземления должны быть по возможности короткими по отношению к заземленной муфте концевой разделки кабеля. Провода заземления не должны иметь витков, создающих индуктивное сопротивление. Присоединительное устройство необходимо устанавливать по возможности ближе к зажимам кабеля так, чтобы соединительный провод между кабелем и присоединительным устройством был не более 3 м. Зарядное сопротивление должно быть расположено непосредственно у места подключения присоединительного устройства. Свободные жилы кабеля должны быть изолированы от земли.

Указанные выше приборы позволяют с точностью до +5% определять расстояния до места повреждения кабеля и их применение является наиболее эффективным при “заплывающих” пробоях.

Порядок проведения измерений приборами подробно излагается в заводских инструкциях.

 

  1. Отыскание места повреждения кабеля

Методы, с помощью которых отыскивают непосредственно место повреждения кабеля, носят название абсолютные и к ним относятся: индукционный метод; метод накладной рамки; акустический метод; метод измерения потенциалов.

Как правило, применению абсолютных методов предшествует отыскание участка повреждения кабеля с помощью относительных методов.

а) Индукционный метод.

Данный метод применяется при определении места повреждения кабеля с замыканием жил между собой и при переходном сопротивлении в месте замыкания не более 10 Ом, а также для определения трассы и глубины залегания неповрежденного кабеля и места расположения кабельных муфт.

Метод основан на фиксации характера изменения электромагнитного поля над кабелем с помощью приемного устройства при пропускании по кабелю тока звуковой частоты. В качестве приемного устройства выступает антенна, в которой под действием переменного электромагнитного поля наводится э.д.с., усиливаемая усилителем и воспроизводящая звуковые сигналы с помощью телефона (см. рис. 20). В качестве источника тока используют генератор звуковой частоты 800-1200 Гц напряжением 100-200 В и током до 20 А (например, генератор ОП-2).

Определение места замыкания между жилами осуществляется по схеме рис. 20. Выводы генератора присоединяют к поврежденным жилам кабеля и подается ток звуковой частоты. Одновременно по трассе кабеля проходит оператор, прослушивающий через телефон звучание наведенных от кабеля в антенне электромагнитных волн. Звучание периодически изменяется в соответствии с шагом скрутки жил кабеля (1-2,5 м). В месте нахождения муфт звучание усиливается при одновременном уменьшении периодичности. При подходе к месту повреждения звучание сигнала усиливается, а на расстоянии примерно 0,5 м за повреждением прекращается.

 Рис. 20. Схема определения повреждения кабеля индукционным методом (а) и характер изменения э.д.с. антенны вдоль кабеля.

При определении места повреждения полезно знать распределение магнитного поля при прохождении тока звуковой частоты по жилам кабеля и характер изменения э.д.с. наводимой в антенне (см. рис. 21). Наводимая в антенне э.д.с. существенно за висит от расположения антенны над кабелем. Так при вертикальной ориентации магнитной оси антенны максимальное значение э.д.с., а следовательно, максимальное звучание, будет иметь место непосредственно над кабелем. В этом положении витки антенны будут пересекаться максимальным магнитным потоком. Интенсивность звучания будет уменьшаться при перемещении антенны поперек кабеля (см. рис. 21 кривая 1). При горизонтальной ориентации магнитной оси антенны минимальное звучание будет иметь место непосредственно над кабелем (см. рис. 21 кривая 2), а интенсивность звучания увеличивается при поперечном перемещении антенны относительно кабеля.

Для повышения достоверности определения места повреждения рекомендуется осуществлять поиск включая генератор поочередно с одного и другого конца кабеля. При наличии повреждения звучание будет прекращаться в одном и том же месте.

Наводимая в антенне э.д.с. уменьшается пропорционально квадрату расстояния от оси кабеля. Для того чтобы звучание не пропадало необходимо, как можно точнее, выставлять антенну над осью кабеля. Для повышения уровня звучания увеличивают ток пропускаемый по жилам кабеля.

 

Рис. 21. Характер изменения э.д.с., наводимой в антенне для вертикального (1) и горизонтального (2) положений оси антенны и распределение магнитного поля пары токов при горизонтальном (а) и

Представленный метод используется вертикальном (б) расположения жил кабеля.

Определение места однофазного замыкания на оболочку кабеля изложенным методом теоретически возможно, но практически осуществить трудно даже при наличии большого практического опыта. Это вызвано тем, что в месте повреждения ток растекается по оболочке кабеля в обе стороны и, следовательно, звучание за местом повреждения не прекращается в отличие от случая рассмотренного выше. Для отыскания таких повреждений применяют метод накладной рамки, который является разновидностью индукционного метода.

Представленный метод используется также для определения трассы кабеля.. На рис. 22 представлены схема включения генератора, характер изменения э.д.с. наводимой в антенне и распределение магнитного поля. В данном случае при горизонтальной ориентации магнитной оси антенны наводимая э.д.с. имеет максимальное значение над кабелем (кривая 2), так как витки обмотки антенны пересекаются максимальным магнитным потоком. Обратная картина наблюдается при вертикальной ориентации оси, так как витки обмотки антенны в данном случае не пересекаются магнитным потоком.

 

Рис. 22. Схема определения трассы индукционным методом (а), характер изменения э.д.с. вдоль оси кабеля (б), характер изменения э.д.с. при перемещении антенны поперек оси кабеля (в) и распределение магнитного поля тока одной жилы (г).

б) Метод накладной рамки.

Данный метод применяется для определения однофазных замыканий жилы на оболочку при открытой прокладке кабеля, а также для кабельных линий проложенных в земле в предварительно отрытых шурфах на участке повреждения кабеля.

 Участок повреждения определяется одним из методов, изложенных в п. 13.4.2.

Накладная рамка выполняет роль антенны и состоит из прямоугольной катушки, изогнутой по форме оболочки кабеля и закрытой стальным ярмом для усиления э.д.с. пары токов. Обмотка содержит 1000 витков провода ПЭВ диаметром 0,1 мм К рис. 23).

Рис. 23. Схема определения замыкания методом накладной рамки.

1 – стальное ярмо; 2 – обмотка; 3 – оболочка кабеля.

Генератор звуковой частоты подключают к жиле и оболочке поврежденного кабеля. Если рамка находится до места повреждения со стороны генератора, то при вращении рамки вокруг оси кабеля в телефоне за один оборот рамки будут прослушиваться два максимума и два минимума звучания. Это свидетельствует о том, что в кабеле существует поле пары то ков протекающих по жиле и оболочке. Если же рамка находится за местом повреждения, то при ее вращении вокруг оси кабеля будет прослушиваться только монотонное звучание, обусловленное полем одиночного тока протекающего по оболочке. Таким образом, по изменению характера звучания находят место повреждения.

Данный метод позволяет достаточно эффективно отыскивать место повреждения кабеля при переходном сопротивлении не более единиц Ом и длине кабеля за местом повреждения до 1 км. В других случаях отыскание места повреждения с помощью накладной рамки затруднительно.

в) Акустический метод.

Данный метод предполагает создание в месте повреждения мощных электрических разрядов, которые сопровождаются звуковыми колебаниями. Последние фиксируются на поверхности земли с помощью стетоскопа или пьезоэлемента с усилителем. Место повреждения определяется по наибольшему звучанию, вызванному разрядами.

Акустический метод применяется для определения места повреждения, носящий характер “заплывающего” пробоя, а также при обрыве жил кабеля.

Для создания разрядов в месте повреждения используется электрическая энергия, накапливаемая в конденсаторах или в самом кабеле путем заряда от выпрямительной установки (рис. 24).

 

Рис. 24. Схемы определения места повреждения акустическим методом.

а – при устойчивом замыкании жилы на оболочку кабеля; б – при “заплывающем” пробое; в – использованием емкости неповрежденных жил; г – при обрыве жилы кабеля.

Энергия, накапливаемая в конденсаторе или кабеле, пропорциональна заряжаемой емкости и квадрату приложенного напряжения и составляет 100 Дж и более. При достижении напряжения пробоя эта энергия расходуется за очень короткое время и в месте повреждения происходит мощный удар, сопровождаемый соответствующим звуковым эффектом.

http://www.energoboard.ru/information/14-ispitanie-kabeley/

0

Автор публикации

не в сети 2 месяца

apriori

0
Комментарии: 0Публикации: 215Регистрация: 18-01-2019

Добавить комментарий